• Title/Summary/Keyword: adaptive weight

검색결과 453건 처리시간 0.031초

미소경 드릴링 머신의 시작과 감시에 관한 연구 (A Study on the Development and the Monitoring of Micro Hole Drilling Machine)

  • 백인환;정우섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권4호
    • /
    • pp.62-68
    • /
    • 1994
  • Recently, the trends toward reduction in size and weight of industrial products increased the application of micro hole for manufacturing gadgets of high precision and gave rise to a great deal of interest for micro hole drilling M/C. Quite a few research work is performed on micro drilling on domestic basis compared with the tendency of analyzing cutting mechanism, adaptive control, monitoring of generally available drills of diameter greater than 1mm. This study adresses the design, manufacturing and controlling a micro hole drilling M/C with the overload detection instrument and the step feed mechanism. Controlling and monitoring of the drilling process are acomplished on PC basis for more user interfaces and effectiveness. The test machine of the results of this research shows a good foundation for extending further micro hole machining technique.

  • PDF

헬리콥터 주로터 블레이드 동적밸런싱 시험을 위한 조절변수 최적화 연구 (A Study on Adjustment Optimization for Dynamic Balancing Test of Helicopter Main Rotor Blade)

  • 송근웅;최종수
    • 한국소음진동공학회논문집
    • /
    • 제26권6_spc호
    • /
    • pp.736-743
    • /
    • 2016
  • This study describes optimization methods for adjustment of helicopter main rotor tracking and balancing (RTB). RTB is a essential process for helicopter operation and maintenance. Linear and non-linear models were developed with past RTB test results for estimation of RTB adjustment. Then global and sequential optimization methods were applied to the each of models. Utilization of the individual optimization method with each model is hard to fulfill the RTB requirements because of different characteristics of each blade. Therefore an ensemble model was used to integrate every estimated adjustment result, and an adaptive method was also applied to adjustment values of the linear model to update for next estimations. The goal of this developed RTB adjustment optimization program is to achieve the requirements within 2 run. Additional tests for comparison of weight factor of the ensemble model are however necessary.

고전 역학의 라그랑지안을 이용한 미분 기하학적 global minimum 탐색 알고리즘 (A Novel Global Minimum Search Algorithm based on the Geodesic of Classical Dynamics Lagrangian)

  • 김준식;오장민;김종찬;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (A)
    • /
    • pp.39-42
    • /
    • 2006
  • 뉴럴네트워크에서 학습은 에러를 줄이는 방법으로 구현 된다. 이 때 parameter 공간에서 Risk function은 multi-minima potential로 표현 될 수 있으며 우리의 목적은 global minimum weight 좌표를 얻는 것이다. 이전의 연구로는 Attouch et al.의 damped oscillator 방정식을 이용한 방법이 있고, Qian의 critically damped oscillator를 통한 steepest descent의 momentum과 learning parameter 유도가 있다. 우리는 이 두 연구를 참고로 manifold 상에서 최단 경로인 geodesic을 Newton 역학의 Lagrangian에 적용함으로써 adaptive steepest descent 학습법을 얻었다. 우리는 이 새로운 방법을 Rosenbrock 과 Griewank 포텐셜들에 적용하여 그 성능을 알아 본다.

  • PDF

유전자 알고리즘을 이용한 구조 적응형 자기구성 지도의 자식 노드 가중치 초기화 (Optimal Weight Initialization of Structure-Adaptive Self-Organizing Map with Genetic Algorithm)

  • 김현돈;조성배
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 제13회 춘계학술대회 및 임시총회 학술발표 논문집
    • /
    • pp.89-93
    • /
    • 2000
  • 구조 적응형 자기구성 지도는 일반적으로 자기구성 지도의 구조가 초기에 결정되어 학습이 끝날 때까지 변하지 않기 때문에 발생하는 문제를 해결하기 위해 지도의 구조를 학습 중에 적절하게 변경시킨다. 이때, 변화된 구조의 가중치를 어떻게 초기화시킬 것인가 하는 것이 중요한 문제이다. 이 논문에서는 기존의 비교사 학습방법에 LVQ 알고리즘을 이용한 교사 학습방법을 결합한 구조 적응형 자기구성 지도 모델에서 유전자 알고리즘을 이용하여 분화된 노드의 가중치를 결정하는 방법을 제안한다. 이 방법은 기존의 구조 적응형 자기구성 지도 알고리즘보다 빠르게 학습되었고, 인식률 면에서도 기존의 방법보다 높은 값을 나타내었으며, 자기구성 지도의 특성인 위상 보존도 잘 이루어졌다. 오프라인 필기 숫자 데이터로 실험한 결과, 제안한 방법이 유용함을 알 수 있었다.

  • PDF

An Improved Level Set Method to Image Segmentation Based on Saliency

  • Wang, Yan;Xu, Xianfa
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.7-21
    • /
    • 2019
  • In order to improve the edge segmentation effect of the level set image segmentation and avoid the influence of the initial contour on the level set method, a saliency level set image segmentation model based on local Renyi entropy is proposed. Firstly, the saliency map of the original image is extracted by using saliency detection algorithm. And the outline of the saliency map can be used to initialize the level set. Secondly, the local energy and edge energy of the image are obtained by using local Renyi entropy and Canny operator respectively. At the same time, new adaptive weight coefficient and boundary indication function are constructed. Finally, the local binary fitting energy model (LBF) as an external energy term is introduced. In this paper, the contrast experiments are implemented in different image database. The robustness of the proposed model for segmentation of images with intensity inhomogeneity and complicated edges is verified.

얼굴교체 시스템을 위한 적응적 블렌딩 방법 (Adaptive Face Blending for Face Replacement System)

  • 장성걸;김창섭;박종일
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.133-135
    • /
    • 2018
  • 본 논문에서는 포즈에 적응적인 가중치 맵 (weight map)에 기반한, 얼굴 교체시스템을 위한 블렌딩 기법을 제안한다. 우선 얼굴교체를 진행하기 위해 목표얼굴이 들어있는 영상으로부터 실시간으로 얼굴의 기하학적 특징점 (land mark)을 검출한다. 다음 검출된 특징점의 분포에 따라 얼굴영역에 대해 삼각화 (triangulation)를 진행한다. 참조영상에 대해서도 같은 과정을 적용하고 대응되는 영역끼리 워핑 (warping) 변환을 시키면 목표 얼굴과 같은 포즈의 참조얼굴을 얻을 수 있다. 그 다음 두 영상의 피부색 톤을 일치시켜주고 안면교체를 진행한다. 하지만 교체된 영역과 목표 얼굴 사이에 부자연스러운 경계가 발생하게 되는데 블렌딩 기법을 통해 이런 경계를 제거한다. 본 논문에서는 사전에 표준얼굴형태모델을 이용하여 정면 얼굴의 가중치 맵을 생성하고, 표준얼굴형태모델과 목표 얼굴사이 변환관계를 이용하여 포즈에 대응되는 가중치지도를 생성하였다. 이렇게 얻어진 가중치 맵은 일관되게 정해진 가중치 맵에 비해 포즈변화에 적응적으로 대처할 수 있어 보다 자연스러운 얼굴교체 효과를 얻을 수 있다.

  • PDF

A Federated Multi-Task Learning Model Based on Adaptive Distributed Data Latent Correlation Analysis

  • Wu, Shengbin;Wang, Yibai
    • Journal of Information Processing Systems
    • /
    • 제17권3호
    • /
    • pp.441-452
    • /
    • 2021
  • Federated learning provides an efficient integrated model for distributed data, allowing the local training of different data. Meanwhile, the goal of multi-task learning is to simultaneously establish models for multiple related tasks, and to obtain the underlying main structure. However, traditional federated multi-task learning models not only have strict requirements for the data distribution, but also demand large amounts of calculation and have slow convergence, which hindered their promotion in many fields. In our work, we apply the rank constraint on weight vectors of the multi-task learning model to adaptively adjust the task's similarity learning, according to the distribution of federal node data. The proposed model has a general framework for solving optimal solutions, which can be used to deal with various data types. Experiments show that our model has achieved the best results in different dataset. Notably, our model can still obtain stable results in datasets with large distribution differences. In addition, compared with traditional federated multi-task learning models, our algorithm is able to converge on a local optimal solution within limited training iterations.

A Modified Steering Kernel Filter for AWGN Removal based on Kernel Similarity

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제20권3호
    • /
    • pp.195-203
    • /
    • 2022
  • Noise generated during image acquisition and transmission can negatively impact the results of image processing applications, and noise removal is typically a part of image preprocessing. Denoising techniques combined with nonlocal techniques have received significant attention in recent years, owing to the development of sophisticated hardware and image processing algorithms, much attention has been paid to; however, this approach is relatively poor for edge preservation of fine image details. To address this limitation, the current study combined a steering kernel technique with adaptive masks that can adjust the size according to the noise intensity of an image. The algorithm sets the steering weight based on a similarity comparison, allowing it to respond to edge components more effectively. The proposed algorithm was compared with existing denoising algorithms using quantitative evaluation and enlarged images. The proposed algorithm exhibited good general denoising performance and better performance in edge area processing than existing non-local techniques.

자가 적응 시스템에서의 목표 모델의 동적 가중치 변경에 관한 연구 (A Study on dynamic weight-changing method of goal model for self-adaptive system)

  • 황다솜;이종현;이은석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.1354-1357
    • /
    • 2011
  • 자가 적응 시스템은 사람의 직접적인 개입 없이 자율 제어를 통한 자가 최적화 (self-optimization), 자가 치유 (self-healing) 등의 능력이 요구되고, 이러한 시스템은 시스템이 조달된 환경과 시스템 내부 상황을 고려한 적절한 적응 정책과 목표 평가를 통해 시스템의 신뢰성을 보장할 수 있어야 한다. 목표 기반의 자가 제어 시스템은 목표 만족도에 따라 시스템을 자율 제어하기 때문에 목표 기반 자가 적응 시스템에서의 목표 만족도(goal satisfaction) 평가는 매우 중요하지만 기존의 연구들의 목표 만족도 평가 방법에서는 환경 변화가 반영되지 않는다는 한계가 있다. 본 논문에서는 목표 모델에서의 상위 목표에 대한 하위 목표들의 기여도에 따라 가중치를 부여하고 시스템의 외부 환경 변화에 따라 가중치를 동적으로 변경하는 방법을 제안한다. 이를 통해 기존의 목표 평가 방법보다 사용자의 요구가 잘 반영되고 신뢰성 높은 평가가 가능하다.

A Bayesian joint model for continuous and zero-inflated count data in developmental toxicity studies

  • Hwang, Beom Seuk
    • Communications for Statistical Applications and Methods
    • /
    • 제29권2호
    • /
    • pp.239-250
    • /
    • 2022
  • In many applications, we frequently encounter correlated multiple outcomes measured on the same subject. Joint modeling of such multiple outcomes can improve efficiency of inference compared to independent modeling. For instance, in developmental toxicity studies, fetal weight and number of malformed pups are measured on the pregnant dams exposed to different levels of a toxic substance, in which the association between such outcomes should be taken into account in the model. The number of malformations may possibly have many zeros, which should be analyzed via zero-inflated count models. Motivated by applications in developmental toxicity studies, we propose a Bayesian joint modeling framework for continuous and count outcomes with excess zeros. In our model, zero-inflated Poisson (ZIP) regression model would be used to describe count data, and a subject-specific random effects would account for the correlation across the two outcomes. We implement a Bayesian approach using MCMC procedure with data augmentation method and adaptive rejection sampling. We apply our proposed model to dose-response analysis in a developmental toxicity study to estimate the benchmark dose in a risk assessment.