Journal of the Institute of Electronics Engineers of Korea SP
/
v.46
no.6
/
pp.163-174
/
2009
Applying the maximally polyphase decomposition and noble identity to the adaptive filter in subband structure, the conventional fullband affine projection algorithm is translated to the subband affine projection (SAP) algorithm. The Maximally polyphase decomposed SAP (MPDSAP) algorithm is a special version of the SAP algorithm, and its adaptive sub-filters have unity projection dimension. The weight updating formular of the MPDSAP is similar to that of the NLMS algorithm, so it may be more proper algorithm than other AP-type algorithms for many practical applications. This paper presents a new statistical analysis of the MPDSAP algorithm. The analytical model is derived for autoregressive (AR) inputs and the nonunity adaptive gain in the subband structure with the orthonormal analysis filters (OAF), The pre-whitening by the OAF allows the derivation of a simple-analytical model for the MPDSAP with the AR inputs and the nonunity adaptive gain.
Journal of the Korea Academia-Industrial cooperation Society
/
v.4
no.4
/
pp.391-397
/
2003
This paper is about the digital image decimation algorithm which generates a value of decimated element by an average of a target pixel value and a value of neighbor intelligible element to adaptively reflect the merits of ZOD method and FOD method on the decimated image. First, a target pixel located at the center of sliding window is selected, then the gradient amplitudes of its right neighbor pixel and its lower neighbor pixel are calculated using first order derivative operator respectively. Secondly, each gradient amplitude is divided by the summation result of two gradient amplitudes to generate each intelligible weight. Next, a value of neighbor intelligible element is obtained by adding a value of the right neighbor pixel times its intelligible weight to a value of the lower neighbor pixel times its intelligible weight. The decimated image can be acquired by applying the process repetitively to all pixels in input image which generates the value of decimated element by calculating the average of the target pixel value and the value of neighbor intelligible element.
Journal of the Korea Society of Computer and Information
/
v.22
no.12
/
pp.49-54
/
2017
Pathfinding for pedestrians provided by various navigation programs is based on a shortest path search algorithm. There is no big difference in their guide results, which makes the path quality more important. Multiple criteria should be included in the search cost to calculate the path quality, which is called a multi-criteria pathfinding. In this paper we propose a user adaptive pathfinding algorithm in which the cost function for a multi-criteria pathfinding is defined as a weighted sum of multiple criteria and the weights are learned automatically by Perceptron learning. Weight learning is implemented in two ways: short-term weight learning that reflects weight changes in real time as the user moves and long-term weight learning that updates the weights by the average value of the entire path after completing the movement. We use the weight update method with momentum for long-term weight learning, so that learning speed is improved and the learned weight can be stabilized. The proposed method is implemented as an app and is applied to various movement situations. The results show that customized pathfinding based on user preference can be obtained.
Currently changing trends of child health care is demand total health assessment of child including growth and development. This study concentrates on the growth & developmental status of low birth weight infant for help their growth & development. Thus it can be provide a direction for scientific health education and counseling materials by investigating factor of growth & development. The subjects for this study were made up of 40 low birth weight infant who attended the well baby clinic of E university Hospital. The study method used was a questionnaire & anthropometric assessment and DDST for normative data of development. The period for data collection was from July 1st to August 31th, 1982. Analysis of the data was done using percentages, $\chi$$^2$-test Stepwise Multiple Regression. The results of study were as follows. 1. The mean weight of birth was 2,068gm and mean of gestational period was 35.65 weeks. 2. The age at which weight ; 32.5%, head circumference : 67,5% chest circumference : 55.0%, height : 50. 0% was normal range of physical growth. 3. The reverse age at which social development ; 87.5%, fine motor & adaptive development ; 70.0%, gross motor development ; 72.5% of children Passed by DDST to determine of normal range of development. 4. In the among variables, it was found that the infant who were the higher emotional & verbal response of mother and stimulus environment was the more normal range of weight & development than who was not. 5. The stepwise Multiple Regression between developmental status and predictors-birth order, weight at birth, sex, antenatal care, gestational period-are accounts for 34.1%.
This paper presents an adaptive back propagation algorithm that update the learning parameter by the generated error, adaptively and configuration of the range for the initial connecting weight according to the different maximum target value from minimum target value. This algorithm is expected to escaping from the local minimum and make the best environment for the convergence. On the simulation tested this algorithm on three learning pattern. The first was 3-parity problem learning, the second was $7{\times}5$ dot alphabetic font learning and the third was handwritten primitive strokes learning. In three examples, the probability of becoming trapped in local minimum was reduce. Furthermore, in the alphabetic font and handwritten primitive strokes learning, the neural network enhanced to loaming efficient about 27%~57.2% for the standard back propagation(SBP).
The objective of this paper is to present an adaptive algorithm for computing the weight vector which provides a beam pattern having its maximum gain along the direction of the mobile target signal source in the presence of interfering signals within a cell. The conjugate gradient method (CGM) is modified in such a way that the suboptimal weight vector is produced with the computational load of O(16N), which has been found to be small enough for the real-time processing of signals in most land mobile communications with the digital signal processor (DSP) off the shelf, where N denotes the number of antenna elements of the array. The adaptive procedure proposed in this paper is applied to code division multiple access (CDMA) mobile communication system to show its excellent performance in terms of signal to interference plus noise ratio (SINR), bit error rate (BER), and capacity, which are enhanced by about 7 dB, ${\frac{1}{100}}$ times, and 7 times, respectively, when the number of antenna elements is 6 and the processing gain is 20 dB.
A problem of making a neural network learning self-adaptive to the training set supplied is addressed in this paper. This arises from the aspect in choice of an adequate stepsize for the update of the current weigh vectors according to the training pairs. Related issues in this attempt are raised and fundamentals in neural network learning are introduced. In comparison to the most popular back-propagation scheme, the usefulness and superiority of the proposed weight update algorithm are illustrated by examing the identification of unknown nonlinear systems only from measurements.
Display devices are becoming increasingly important as an interface between humans and machines in the growing information society. In display devices, PDP (Plasma Display Panel) has many advantages in that it has wide screen, wide viewing angle and is light weight, thin. In PDP driving method, if the brightness of input image is high, applying the fixed sustain pulse to the PDP panel will raise the PDP power consumption and may damages the PDP panel. To overcome these problems, the Plasma AI driving method was introduced by the Matshushita co. in Japan. The Plasma AI driving module calculates the peak value and average value of 1 frame image and adjusts the gradation and sustain pulses for 1 frame sustain. In this paper, the proposed PDP driving module is based on the Plasma AI driving module. The proposed driving module calculates peak value and average value, and the brightness distribution of 1 frame image. Using brightness distribution, the proposed driving module divides 1 frame input image into 15 image patterns. For each image pattern, minimum sustain pulses and sub-frames are used for the brightness of 1 frame image and the sustain weight for 64, 128, 192 gradation is proposed. Therefore, the sustain power consumption can be reduced.
Transactions of the Korean Society of Mechanical Engineers
/
v.11
no.2
/
pp.234-242
/
1987
The solution of shape design problems based on variational analysis has been approached by using the domain adaptive method. The objective of the structural shape design is to minimize the weight within a bound on local stress measure, or to minimize the maximum local stress measure within a bound on the weight. A derived optimality condition in both design problems requires that the unit mutual energy has constant value along the design boundary. However, the condition for constant stress on the design boundary was used in computation since the computed mutual energy oscillates severely on the boundary. A two step iteration scheme using domain adaptation was presented as a computational method to slove the example designs of elastic structures. It was also shown that remeshing by grid adaptation was effective to reduce oscillatory behavior on the design boundary.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.1
/
pp.305-326
/
2019
Discriminative correlation filter (DCF) based tracking algorithms have recently shown impressive performance on benchmark datasets. However, amount of recent researches are vulnerable to heavy occlusions, irregular deformations and so on. In this paper, we intend to solve these problems and handle the contradiction between accuracy and real-time in the framework of tracking-by-detection. Firstly, we propose an innovative strategy to combine the template and color-based models instead of a simple linear superposition and rely on the strengths of both to promote the accuracy. Secondly, to enhance the discriminative power of the learned template model, the spatial regularization is introduced in the learning stage to penalize the objective boundary information corresponding to features in the background. Thirdly, we utilize a discriminative multi-scale estimate method to solve the problem of scale variations. Finally, we research strategies to limit the computational complexity of our tracker. Abundant experiments demonstrate that our tracker performs superiorly against several advanced algorithms on both the OTB2013 and OTB2015 datasets while maintaining the high frame rates.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.