• 제목/요약/키워드: adaptive tracking

검색결과 913건 처리시간 0.033초

적응적 줌 트랙킹 기법을 이용한 비디오 카메라 시스템 (A Video Camera System with Adaptive Zoom Tracking)

  • 김윤;이준석;정재환;고성제
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.343-346
    • /
    • 2002
  • This paper presents an advanced auto focus camera system using the adaptive zoom tracking method. The proposed system can achieve an accurate zoom tracking with significantly reduced system memory.

  • PDF

Adaptive Tracking Controller Design for Welding Mobile Manipulator with Unknown Parameters

  • 김상봉
    • 한국해양공학회지
    • /
    • 제23권2호
    • /
    • pp.8-17
    • /
    • 2009
  • This paper presents an adaptive tracking control method for a welding mobile manipulator with several unknown parameters such as the last length of the manipulator, the wheel radius and the distance from the center to the wheel. The mobile manipulator consisted of the manipulator and the mobile-platform. Kinematic modelings for the manipulator and the mobile-platform with several unknown parameters were produced. The tracking error vectors for the manipulator and the mobile-platform were defined. These adaptive controllers were designed based on the Lyapunov function to guarantee the stability of the whole system when the mobile manipulator performs a welding task. Update laws were also designed to estimate the unknown dimensional parameters. To implement the designed controllers, a control system integrated with PIC16F877 microprocessors and a TMS320C32 DSP was developed. Simulation and experimental results are presented to show the effectiveness of the proposed controllers.

퍼지 관측기와 퍼지 가변구조제어를 이용한 천정주행 크레인의 적응형 흔들림 억제 궤적추종제어 (Adaptive Anti-Sway Trajectory Tracking Control of Overhead Crane using Fuzzy Observer and Fuzzy Variable Structure Control)

  • 박문수;좌동경;홍석교
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.452-461
    • /
    • 2007
  • Adaptive anti-sway and trajectory tracking control of overhead crane is presented, which utilizes Fuzzy Uncertainty Observer(FUO) and Fuzzy based Variable Structure Control(FVSC). We consider an overhead crane system which can be decoupled into the actuated and unactuated subsystems with its own lumped uncertainty such as parameter uncertainties and external disturbance. First, a new method for anti-sway control using FVSC is proposed to improve the conventional method based on Lyapunov direct method, while a conventional trajectory tracking control law using feedback linearization is directly adopted. Second, FUO is designed to estimate one of the two lumped uncertainties which can compensate both of them, based on the fact that two lumped uncertainties are coupled with each other. Then, an adaptive anti-sway control is proposed by incorporating the proposed FVSC and FUO. Under the condition that the observation error is Uniformly Ultimately Bounded(UUB) within an arbitrarily shrinkable region, the overall closed-loop system is shown to be Globally Uniformly Ultimately Bounded(GUUB). In addition, the Global Asymptotic Stability(GAS) of it is shown under the vanishing disturbance assumption. Finally, the effectiveness of the proposed scheme has been confirmed by numerical simulations.

위상배열 레이다를 위한 3차원 적응 표본화 빈도 추적 알고리듬의 설계 (Design of a 3-D Adaptive Sampling Rate Tracking Algorithm for a Phased Array Radar)

  • 손건;홍순목
    • 전자공학회논문지B
    • /
    • 제30B권5호
    • /
    • pp.62-72
    • /
    • 1993
  • The phased array antenna has the ability to perform adaptive sampling by directing the radar beam without inertia in any direction. The adaptive sampling capability of the phased array antenna allows each sampling time interval to be varied for each target, depending on the acceleration of each target at any time. In this paper we design a three dimensional adaptive target tracking algorithm for the phased array radar system with a given set of measurement parameters. The tracking algorithm avoids taking unnecessarily frequent samples, while keeping the angular prediction error within a fraction of antenna beamwidth so that the probability of detection will not be degraded during a track updata illuminations. In our algorithm, the target model and the sampling rate are selected depending on the target range and the target maneuver status which is determined by a maneuver level detector. A detailed simulation is conducted to test the validity of our tracking algorithm for target trajectories under various conditions of maneuver.

  • PDF

Adaptive Sliding Mode Control with Enhanced Optimal Reaching Law for Boost Converter Based Hybrid Power Sources in Electric Vehicles

  • Wang, Bin;Wang, Chaohui;Hu, Qiao;Ma, Guangliang;Zhou, Jiahui
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.549-559
    • /
    • 2019
  • This paper proposes an adaptive sliding mode control (ASMC) strategy with an enhanced optimal reaching law (EORL) for the robust current tracking control of the boost converter based hybrid power source (HPS) in an electric vehicle (EV). A conventional ASMC strategy based on state observers and the hysteresis control method is used to realize the current tracking control for the boost converter based HPS. Then a novel enhanced exponential reaching law is proposed to improve the ASMC. Moreover, an enhanced exponential reaching law is optimized by particle swarm optimization. Finally, the adaptive control factor is redesigned based on the EORL. Simulations and experiments are established to validate the ASMC strategy with the EORL. Results show that the ASMC strategy with the EORL has an excellent current tracking control effect for the boost converter based HPS. When compared with the conventional ASMC strategy, the convergence time of the ASMC strategy with the EORL can be effectively improved. In EV applications, the ASMC strategy with the EORL can achieve robust current tracking control of the boost converter based HPS. It can guarantee the active and stable power distribution for boost converter based HPS.

강인.적응제어 방식에 의한 이동로봇의 동력학 제어 (Dynamic control of mobile robots using a robust.adaptive control method)

  • 남재호;백승민;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.449-452
    • /
    • 1996
  • In this paper, a robust.adaptive control scheme is presented for precise trajectory tracking of nonholonomic mobile robots. In the controller, a set of desired trajectory is defined and used in constructing the control input which constitutes the main part of the proposed controller. The stable operating characteristics such as precise trajectory tracking, parameter estimation, disturbance suppression, tec., are shown through experiments as well as computer simulation.

  • PDF

Robust Adaptive Sliding Mode Control of Robot Manipulators Using a Model Reference Approach

  • Lee, Tae-Hwan;Bae, Jun-Kyung
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권1호
    • /
    • pp.36-44
    • /
    • 1998
  • In this paper, a robust adaptive sliding mode control algorithm for accurate trajectory tracking of robot manipulators is proposed, with unknown parameters being estimated on-line. The controller is designed based on a Lyapunov method, which consists of adaptive feed-forward compensation part and a discontinuous control part. It is shown that, in the presence of the uncertainty and the disturbances arising from the actuator or some other causes, the tracking errors is bound to converge to zero asymptotically. An illustrative example is given to demonstrate the results of the propose method.

  • PDF

An adaptive Control of the Nonholonomic Mobile AGV

  • 한철용;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.307-310
    • /
    • 2001
  • Mobile AGV is one of the nonholon-omic systems. The integration of the kinematic adaptive controller for the dynamic in this pa-per introduction a motion control problem's dynamic state feedback as well as output feedback tracking laws will be constructed with the adaptive extension of the controller is proposed. Feedback control strategies for mobile AGV are important to compensate for disturabances and errors in the initial condition. The problems of path following or tracking and of stabilization about a constant configuration have been treated as separate problems for nonholonomic mobile AGV.

  • PDF

입출력 선형화를 응용한 불확실한 시스템의 적응제어에 관한 연구 (Adaptive control of uncertain system using input-output linearization)

  • 백운보;윤강섭;배종일;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1081-1084
    • /
    • 1991
  • A technique of indirect adaptive control based on certainty equivalence for input output linearization of nonlinear system is proven convergent by Teel. It incorporates an adaptive observer for identifying unknown system states and parameters and input-output linearizing controller for robust tracking. In this study, we show that robustness and tracking performances are improved considerably by using its normalized form of Teel's observer-based identifier. Simple examples are presented as illustration.

  • PDF

추적 시스템에 있어서 관성 모멘트 변화를 고려한 PMDC 모터의 부분 적응 제어 (Partial adaptive control of PMDC motor in the tracking system under the variation of moment of inertia)

  • 신성호;김종준;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.506-509
    • /
    • 1986
  • In this paper, the control law for the system that has the variation of moment of inertia is designed. The proposed method is that the control input is obtained by using optimal PI control and partial adaptive control. The partial adaptive control input is adjusted by estimating the variational quantity of moment of inertia. This result gives us significant improvement of tracking ability.

  • PDF