• Title/Summary/Keyword: adaptive smoothing

Search Result 146, Processing Time 0.022 seconds

Study on the Model Tests of Cavitation Erosion Occurring in Navy Ship's Flat-Type Rudder (함정의 평판형 방향타 캐비테이션 침식에 대한 모형 시험 연구)

  • Bu-Geun Paik;Jong-Woo Ahn;Young-Ha Park;So-Won Jeong;Jae-Yeol Song;Yoon-Ho Ko
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.31-37
    • /
    • 2023
  • In the present study, a method of performing cavitation erosion test directly on the anodized surface of the rudder model is proposed, not applying ink or paint on its surface. An image processing technique is newly developed to quantitatively evaluate the erosion damages on the rudder model surface after erosion test. The preprocessing saturation image, image smoothing, adaptive hysteresis thresholding and eroded area detection algorithms are in the image processing program. The rudder cavitation erosion tests are conducted in the rudder deflection angle range of 0° to -4°, which is used to maintain a straight course at the highest speed of the targeted navy ship. In the case of the conventional flat-type full-spade rudder currently being used in the target ship, surface erosion can occur on the model rudder surface in the above rudder deflection angle range. The bubble type of cavitation occurs on rudder surface, which is estimated to be the main reason of erosion damage on the rudder surface.

Quasi-brittle and Brittle Fracture Simulation Using Phase-field Method based on Cell-based Smoothed Finite Element Method (셀기반 평활화 유한요소법에 기반한 위상분야법을 이용한 준취성 및 취성 파괴 시뮬레이션)

  • Changkye Lee;Sundararajan Natarajan;Jurng-Jae Yee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.295-305
    • /
    • 2023
  • This study introduces a smoothed finite-element implementation into the phase-field framework. In recent years, the phase-field method has recieved considerable attention in crack initiation and propagation since the method needs no further treatment to express the crack growth path. In the phase-field method, high strain-energy accuracy is needed to capture the complex crack growth path; thus, it is obtained in the framework of the smoothed finite-element method. The salient feature of the smoothed finite-element method is that the finite element cells are divided into sub-cells and each sub-cell is rebuilt as a smoothing domain where smoothed strain energy is calculated. An adaptive quadtree refinement is also employed in the present framework to avoid the computational burden. Numerical experiments are performed to investigate the performance of the proposed approach, compared with that of the finite-element method and the reference solutions.

Automatic Liver Segmentation of a Contrast Enhanced CT Image Using a Partial Histogram Threshold Algorithm (부분 히스토그램 문턱치 알고리즘을 사용한 조영증강 CT영상의 자동 간 분할)

  • Kyung-Sik Seo;Seung-Jin Park;Jong An Park
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • Pixel values of contrast enhanced computed tomography (CE-CT) images are randomly changed. Also, the middle liver part has a problem to segregate the liver structure because of similar gray-level values of a pancreas in the abdomen. In this paper, an automatic liver segmentation method using a partial histogram threshold (PHT) algorithm is proposed for overcoming randomness of CE-CT images and removing the pancreas. After histogram transformation, adaptive multi-modal threshold is used to find the range of gray-level values of the liver structure. Also, the PHT algorithm is performed for removing the pancreas. Then, morphological filtering is processed for removing of unnecessary objects and smoothing of the boundary. Four CE-CT slices of eight patients were selected to evaluate the proposed method. As the average of normalized average area of the automatic segmented method II (ASM II) using the PHT and manual segmented method (MSM) are 0.1671 and 0.1711, these two method shows very small differences. Also, the average area error rate between the ASM II and MSM is 6.8339 %. From the results of experiments, the proposed method has similar performance as the MSM by medical Doctor.

Automatic Prostate Segmentation in MR Images based on Active Shape Model Using Intensity Distribution and Gradient Information (MR 영상에서 밝기값 분포 및 기울기 정보를 이용한 활성형상모델 기반 전립선 자동 분할)

  • Jang, Yu-Jin;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.110-119
    • /
    • 2010
  • In this paper, we propose an automatic segmentation of the prostate using intensity distribution and gradient information in MR images. First, active shape model using adaptive intensity profile and multi-resolution technique is used to extract the prostate surface. Second, hole elimination using geometric information is performed to prevent the hole from occurring by converging the surface shape to the local optima. Third, the surface shape with large anatomical variation is corrected by using 2D gradient information. In this case, the corrected surface shape is often represented as rugged shape which is generated by the limited number of vertices. Thus, it is reconstructed by using surface modelling and smoothing. To evaluate our method, we performed the visual inspection, accuracy measures and processing time. For accuracy evaluation, the average distance difference and the overlapping volume ratio between automatic segmentation and manual segmentation by two radiologists are calculated. Experimental results show that the average distance difference was 0.3${\pm}$0.21mm and the overlapping volume ratio was 96.31${\pm}$2.71%. The total processing time of twenty patient data was 16 seconds on average.

A Smoothing Data Cleaning based on Adaptive Window Sliding for Intelligent RFID Middleware Systems (지능적인 RFID 미들웨어 시스템을 위한 적응형 윈도우 슬라이딩 기반의 유연한 데이터 정제)

  • Shin, DongCheon;Oh, Dongok;Ryu, SeungWan;Park, Seikwon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.1-18
    • /
    • 2014
  • Over the past years RFID/SN has been an elementary technology in a diversity of applications for the ubiquitous environments, especially for Internet of Things. However, one of obstacles for widespread deployment of RFID technology is the inherent unreliability of the RFID data streams by tag readers. In particular, the problem of false readings such as lost readings and mistaken readings needs to be treated by RFID middleware systems because false readings ultimately degrade the quality of application services due to the dirty data delivered by middleware systems. As a result, for the higher quality of services, an RFID middleware system is responsible for intelligently dealing with false readings for the delivery of clean data to the applications in accordance with the tag reading environment. One of popular techniques used to compensate false readings is a sliding window filter. In a sliding window scheme, it is evident that determining optimal window size intelligently is a nontrivial important task in RFID middleware systems in order to reduce false readings, especially in mobile environments. In this paper, for the purpose of reducing false readings by intelligent window adaption, we propose a new adaptive RFID data cleaning scheme based on window sliding for a single tag. Unlike previous works based on a binomial sampling model, we introduce the weight averaging. Our insight starts from the need to differentiate the past readings and the current readings, since the more recent readings may indicate the more accurate tag transitions. Owing to weight averaging, our scheme is expected to dynamically adapt the window size in an efficient manner even for non-homogeneous reading patterns in mobile environments. In addition, we analyze reading patterns in the window and effects of decreased window so that a more accurate and efficient decision on window adaption can be made. With our scheme, we can expect to obtain the ultimate goal that RFID middleware systems can provide applications with more clean data so that they can ensure high quality of intended services.

Accelerometer-based Gesture Recognition for Robot Interface (로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식)

  • Jang, Min-Su;Cho, Yong-Suk;Kim, Jae-Hong;Sohn, Joo-Chan
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.53-69
    • /
    • 2011
  • Vision and voice-based technologies are commonly utilized for human-robot interaction. But it is widely recognized that the performance of vision and voice-based interaction systems is deteriorated by a large margin in the real-world situations due to environmental and user variances. Human users need to be very cooperative to get reasonable performance, which significantly limits the usability of the vision and voice-based human-robot interaction technologies. As a result, touch screens are still the major medium of human-robot interaction for the real-world applications. To empower the usability of robots for various services, alternative interaction technologies should be developed to complement the problems of vision and voice-based technologies. In this paper, we propose the use of accelerometer-based gesture interface as one of the alternative technologies, because accelerometers are effective in detecting the movements of human body, while their performance is not limited by environmental contexts such as lighting conditions or camera's field-of-view. Moreover, accelerometers are widely available nowadays in many mobile devices. We tackle the problem of classifying acceleration signal patterns of 26 English alphabets, which is one of the essential repertoires for the realization of education services based on robots. Recognizing 26 English handwriting patterns based on accelerometers is a very difficult task to take over because of its large scale of pattern classes and the complexity of each pattern. The most difficult problem that has been undertaken which is similar to our problem was recognizing acceleration signal patterns of 10 handwritten digits. Most previous studies dealt with pattern sets of 8~10 simple and easily distinguishable gestures that are useful for controlling home appliances, computer applications, robots etc. Good features are essential for the success of pattern recognition. To promote the discriminative power upon complex English alphabet patterns, we extracted 'motion trajectories' out of input acceleration signal and used them as the main feature. Investigative experiments showed that classifiers based on trajectory performed 3%~5% better than those with raw features e.g. acceleration signal itself or statistical figures. To minimize the distortion of trajectories, we applied a simple but effective set of smoothing filters and band-pass filters. It is well known that acceleration patterns for the same gesture is very different among different performers. To tackle the problem, online incremental learning is applied for our system to make it adaptive to the users' distinctive motion properties. Our system is based on instance-based learning (IBL) where each training sample is memorized as a reference pattern. Brute-force incremental learning in IBL continuously accumulates reference patterns, which is a problem because it not only slows down the classification but also downgrades the recall performance. Regarding the latter phenomenon, we observed a tendency that as the number of reference patterns grows, some reference patterns contribute more to the false positive classification. Thus, we devised an algorithm for optimizing the reference pattern set based on the positive and negative contribution of each reference pattern. The algorithm is performed periodically to remove reference patterns that have a very low positive contribution or a high negative contribution. Experiments were performed on 6500 gesture patterns collected from 50 adults of 30~50 years old. Each alphabet was performed 5 times per participant using $Nintendo{(R)}$ $Wii^{TM}$ remote. Acceleration signal was sampled in 100hz on 3 axes. Mean recall rate for all the alphabets was 95.48%. Some alphabets recorded very low recall rate and exhibited very high pairwise confusion rate. Major confusion pairs are D(88%) and P(74%), I(81%) and U(75%), N(88%) and W(100%). Though W was recalled perfectly, it contributed much to the false positive classification of N. By comparison with major previous results from VTT (96% for 8 control gestures), CMU (97% for 10 control gestures) and Samsung Electronics(97% for 10 digits and a control gesture), we could find that the performance of our system is superior regarding the number of pattern classes and the complexity of patterns. Using our gesture interaction system, we conducted 2 case studies of robot-based edutainment services. The services were implemented on various robot platforms and mobile devices including $iPhone^{TM}$. The participating children exhibited improved concentration and active reaction on the service with our gesture interface. To prove the effectiveness of our gesture interface, a test was taken by the children after experiencing an English teaching service. The test result showed that those who played with the gesture interface-based robot content marked 10% better score than those with conventional teaching. We conclude that the accelerometer-based gesture interface is a promising technology for flourishing real-world robot-based services and content by complementing the limits of today's conventional interfaces e.g. touch screen, vision and voice.