• Title/Summary/Keyword: adaptive simulated annealing

Search Result 35, Processing Time 0.022 seconds

Differential Choice of Radar Beam Scheduling Algorithm According to Radar Load Status (레이더의 부하 상태에 따른 빔 스케줄링 알고리즘의 선택적 적용)

  • Roh, Ji-Eun;Kim, Dong-Hwan;Kim, Seon-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.322-333
    • /
    • 2012
  • AESA radar is able to instantaneously and adaptively position and control the beam, and such adaptive beam pointing of AESA radar enables to remarkably improve the multi-mission capability. For this reason, Radar Resource Management(RRM) becomes new challenging issue. RRM is a technique efficiently allocating finite resources, such as energy and time to each task in an optimal and intelligent way. Especially radar beam scheduling is the most critical component for the success of RRM. In this paper, we proposed a rule-based scheduling algorithm and Simulated Annealing(SA) based scheduling algorithm, which are alternatively selected and applied to beam scheduler according radar load status in real-time. The performance of the proposed algorithm was evaluated on the multi-function radar scenario. As a result, we showed that our proposed algorithm can process a lot of beams at the right time with real time capability, compared with applying only rule-based scheduling algorithm. Additionally, we showed that the proposed algorithm can save scheduling time remarkably, compared with applying only SA-based scheduling algorithm.

The Algorithm Design and Implement of Microarray Data Classification using the Byesian Method (베이지안 기법을 적용한 마이크로어레이 데이터 분류 알고리즘 설계와 구현)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2283-2288
    • /
    • 2006
  • As development in technology of bioinformatics recently makes it possible to operate micro-level experiments, we can observe the expression pattern of total genome through on chip and analyze the interactions of thousands of genes at the same time. Thus, DNA microarray technology presents the new directions of understandings for complex organisms. Therefore, it is required how to analyze the enormous gene information obtained through this technology effectively. In this thesis, We used sample data of bioinformatics core group in harvard university. It designed and implemented system that evaluate accuracy after dividing in class of two using Bayesian algorithm, ASA, of feature extraction method through normalization process, reducing or removing of noise that occupy by various factor in microarray experiment. It was represented accuracy of 98.23% after Lowess normalization.

Optimal Location of FACTS Devices Using Adaptive Particle Swarm Optimization Hybrid with Simulated Annealing

  • Ajami, Ali;Aghajani, Gh.;Pourmahmood, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.179-190
    • /
    • 2010
  • This paper describes a new stochastic heuristic algorithm in engineering problem optimization especially in power system applications. An improved particle swarm optimization (PSO) called adaptive particle swarm optimization (APSO), mixed with simulated annealing (SA), is introduced and referred to as APSO-SA. This algorithm uses a novel PSO algorithm (APSO) to increase the convergence rate and incorporate the ability of SA to avoid being trapped in a local optimum. The APSO-SA algorithm efficiency is verified using some benchmark functions. This paper presents the application of APSO-SA to find the optimal location, type and size of flexible AC transmission system devices. Two types of FACTS devices, the thyristor controlled series capacitor (TCSC) and the static VAR compensator (SVC), are considered. The main objectives of the presented method are increasing the voltage stability index and over load factor, decreasing the cost of investment and total real power losses in the power system. In this regard, two cases are considered: single-type devices (same type of FACTS devices) and multi-type devices (combination of TCSC, SVC). Using the proposed method, the locations, type and sizes of FACTS devices are obtained to reach the optimal objective function. The APSO-SA is used to solve the above non.linear programming optimization problem for better accuracy and fast convergence and its results are compared with results of conventional PSO. The presented method expands the search space, improves performance and accelerates to the speed convergence, in comparison with the conventional PSO algorithm. The optimization results are compared with the standard PSO method. This comparison confirms the efficiency and validity of the proposed method. The proposed approach is examined and tested on IEEE 14 bus systems by MATLAB software. Numerical results demonstrate that the APSO-SA is fast and has a much lower computational cost.

A Global Optimal Approach for Robot Kinematics Design using the Grid Method

  • Park Joon-Young;Chang Pyung-Hun;Kim Jin-Oh
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.575-591
    • /
    • 2006
  • In a previous research, we presented the Grid Method and confirmed it as a systematic and efficient problem formulation method for the task-oriented design of robot kinematics. However, our previous research was limited in two ways. First, it gave only a local optimum due to its use of a local optimization technique. Second, it used constant weights for a cost function chosen by the manual weights tuning algorithm, thereby showing low efficiency in finding an optimal solution. To overcome these two limitations, therefore, this paper presents a global optimization technique and an adaptive weights tuning algorithm to solve a formulated problem using the Grid Method. The efficiencies of the proposed algorithms have been confirmed through the kinematic design examples of various robot manipulators.

Aircraft delivery vehicle with fuzzy time window for improving search algorithm

  • C.C. Hung;T. Nguyen;C.Y. Hsieh
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.393-418
    • /
    • 2023
  • Drones are increasingly used in logistics delivery due to their low cost, high-speed and straight-line flight. Considering the small cargo capacity, limited endurance and other factors, this paper optimized the pickup and delivery vehicle routing problem with time windows in the mode of "truck+drone". A mixed integer programming model with the objective of minimizing transportation cost was proposed and an improved adaptive large neighborhood search algorithm is designed to solve the problem. In this algorithm, the performance of the algorithm is improved by designing various efficient destroy operators and repair operators based on the characteristics of the model and introducing a simulated annealing strategy to avoid falling into local optimum solutions. The effectiveness of the model and the algorithm is verified through the numerical experiments, and the impact of the "truck+drone" on the route cost is analyzed, the result of this study provides a decision basis for the route planning of "truck+drone" mode delivery.

Efficient Rate Control by Lagrange Multiplier Using Adaptive Mode Selection in Video Coding (비디오 코팅시 Lagrage 승수를 조정하여 적응 모드 선택에 따른 비트율의 제어)

  • Ryu, Chul;Kim, Seung P.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.77-88
    • /
    • 2000
  • This paper presents an approach for rate control by adaptively selecting macroblock modes in video coding.The problem of rate control has been investigated by many authors where quantizer level is adjustedbased on the buffer fullness. The proposed approach is different fron the previous ones [4] id that it finds the optimal decision curve rather than finding a set of the modes. Proposed algorithm extends the coding decision options for rate control to motion/no-motion compensation as well as inter/intra decisions. Instead of having a fixed motion/no-notion compensation or inter/intra decision curve, one can utilize an adaptive decision curvebased on the characteristics of input frames so that the PSNR at a given bit rate is maximized. Therefore, the proposed approach provides better rate control than simple quantizer feedback approach interns of visual quality. The curve is obtained by utilizing simulated annealing optimization technique. Thealgorithm is implemented and simulations are compared with other approaches within H.261 video codec.

  • PDF

Simulated Annealing for Overcoming Data Imbalance in Mold Injection Process (사출성형공정에서 데이터의 불균형 해소를 위한 담금질모사)

  • Dongju Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.233-239
    • /
    • 2022
  • The injection molding process is a process in which thermoplastic resin is heated and made into a fluid state, injected under pressure into the cavity of a mold, and then cooled in the mold to produce a product identical to the shape of the cavity of the mold. It is a process that enables mass production and complex shapes, and various factors such as resin temperature, mold temperature, injection speed, and pressure affect product quality. In the data collected at the manufacturing site, there is a lot of data related to good products, but there is little data related to defective products, resulting in serious data imbalance. In order to efficiently solve this data imbalance, undersampling, oversampling, and composite sampling are usally applied. In this study, oversampling techniques such as random oversampling (ROS), minority class oversampling (SMOTE), ADASYN(Adaptive Synthetic Sampling), etc., which amplify data of the minority class by the majority class, and complex sampling using both undersampling and oversampling, are applied. For composite sampling, SMOTE+ENN and SMOTE+Tomek were used. Artificial neural network techniques is used to predict product quality. Especially, MLP and RNN are applied as artificial neural network techniques, and optimization of various parameters for MLP and RNN is required. In this study, we proposed an SA technique that optimizes the choice of the sampling method, the ratio of minority classes for sampling method, the batch size and the number of hidden layer units for parameters of MLP and RNN. The existing sampling methods and the proposed SA method were compared using accuracy, precision, recall, and F1 Score to prove the superiority of the proposed method.

Structural health monitoring through meta-heuristics - comparative performance study

  • Pholdee, Nantiwat;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.315-327
    • /
    • 2016
  • Damage detection and localisation in structures is essential since it can be a means for preventive maintenance of those structures under service conditions. The use of structural modal data for detecting the damage is one of the most efficient methods. This paper presents comparative performance of various state-of-the-art meta-heuristics for use in structural damage detection based on changes in modal data. The metaheuristics include differential evolution (DE), artificial bee colony algorithm (ABC), real-code ant colony optimisation (ACOR), charged system search (ChSS), league championship algorithm (LCA), simulated annealing (SA), particle swarm optimisation (PSO), evolution strategies (ES), teaching-learning-based optimisation (TLBO), adaptive differential evolution (JADE), evolution strategy with covariance matrix adaptation (CMAES), success-history based adaptive differential evolution (SHADE) and SHADE with linear population size reduction (L-SHADE). Three truss structures are used to pose several test problems for structural damage detection. The meta-heuristics are then used to solve the test problems treated as optimisation problems. Comparative performance is carried out where the statistically best algorithms are identified.

FE MODEL UPDATING OF ROTOR SHAFT USING OPTIMIZATION TECHNIQUES (최적화 기법을 이용한 로터 축 유한요소모델 개선)

  • Kim, Yong-Han;Feng, Fu-Zhou;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.104-108
    • /
    • 2003
  • Finite element (FE) model updating is a procedure to minimize the differences between analytical and experimental results, which can be usually posed as an optimization problem. This paper aims to introduce a hybrid optimization algorithm (GA-SA), which consists of a Genetic algorithm (GA) stage and an Adaptive Simulated Annealing (ASA) stage, to FE model updating for a shrunk shaft. A good agreement of the first four natural frequencies has been achieved obtained from GASA based updated model (FEgasa) and experiment. In order to prove the validity of GA-SA, comparisons of natural frequencies obtained from the initial FE model (FEinit), GA based updated model (FEga) and ASA based updated model (FEasa) are carried out. Simultaneously, the FRF comparisons obtained from different FE models and experiment are also shown. It is concluded that the GA, ASA, GA-SA are powerful optimization techniques which can be successfully applied to FE model updating, the natural frequencies and FRF obtained from all the updated models show much better agreement with experiment than that obtained from FEinit model. However, FEgasa is proved to be the most reasonable FE model, and also FEasa model is better than FEga model.

  • PDF

An online Calibration Algorithm using binary spreading code for the CDMA-based Adaptive Antenna Array

  • Lee, Chong-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.32-39
    • /
    • 2006
  • In this paper, an iterative subspace-based calibration algorithm for a CDMA-based antenna array in the presence of unknown gain and phase error is presented. The algorithm does not depend on the array geometry and does not require a prior knowledge of the Directions Of Arrival (DOA) of the signals. The method requires the code sequence of a reference user only. The proposed algorithm is based on the subspace method and root finding approach, and it provides estimates of the calibration vector, the DOA and the channel impulse response, by using the code sequence of a reference user. The performance of the proposed algorithm was investigated by means of computer simulations and was verified using field data measured through a custom-built W-CDMA test-bed. The data show that experimental results match well with the theoretical calibration algorithm. Also, teh study propose an efficient algorithm using the simulated annealing technique. This algorithm overcomes the requirement of initial guessing in the subspace-based approach.