• Title/Summary/Keyword: adaptive polling algorithm

Search Result 7, Processing Time 0.022 seconds

IPS-based Dynamic Bandwidth Allocation Algorithm with Adaptive Maximum Transmission Window to Increase Channel Utilization in EPON (EPON에서의 효율성 향상을 위한 가변 최대 전송 윈도우를 이용한 IPS 기반의 동적 대역폭 할당 알고리즘)

  • Cho, Seung-Moo;Oh, Chang-Yeong;Chung, Min-Young;Choo, Hyun-Seung;Lee, Tae-Jin
    • The KIPS Transactions:PartC
    • /
    • v.16C no.4
    • /
    • pp.477-486
    • /
    • 2009
  • This paper proposes a dynamic bandwidth allocation (DBA) algorithm with adaptive maximum transmission window (DBA-AMTW) to increase channel utilization in Ethernet passive optical networks (EPONs). A polling mechanism in EPON determines channel utilization and puts constraints on DBA algorithm and scheduling. DBA algorithms based on interleaved polling with stop (IPS) allocate transmission windows to optical network units (ONU) considering requests of all ONUs. However channel idle time when any ONU does not transmit packets decreases channel utilization. Proposed DBA-AMTW improves efficiency of a network and allocates transmission windows effectively by appropriate DBA computation from REPORT messages of all ONUs. An adaptive maximum transmission window for each ONU determined by a DBA computation in the previous scheduling cycle. Simulation results show that the proposed DBA algorithm improves performance of throughput and average delay time.

Energy efficiency strategy for a general real-time wireless sensor platform

  • Chen, ZhiCong
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.617-641
    • /
    • 2014
  • The energy constraint is still a common issue for the practical application of wireless sensors, since they are usually powered by batteries which limit their lifetime. In this paper, a practical compound energy efficiency strategy is proposed and realized in the implementation of a real time wireless sensor platform. The platform is intended for wireless structural monitoring applications and consists of three parts, wireless sensing unit, base station and data acquisition and configuration software running in a computer within the Matlab environment. The high energy efficiency of the wireless sensor platform is achieved by a proposed adaptive radio transmission power control algorithm, and some straightforward methods, including adopting low power ICs and high efficient power management circuits, low duty cycle radio polling and switching off radio between two adjacent data packets' transmission. The adaptive transmission power control algorithm is based on the statistical average of the path loss estimations using a moving average filter. The algorithm is implemented in the wireless node and relies on the received signal strength feedback piggybacked in the ACK packet from the base station node to estimate the path loss. Therefore, it does not need any control packet overheads. Several experiments are carried out to investigate the link quality of radio channels, validate and evaluate the proposed adaptive transmission power control algorithm, including static and dynamic experiments.

An Adaptive Polling Algorithm for IEEE 802.15.6 MAC Protocols (IEEE 802.15.6 맥 프로토콜을 위한 적응형 폴링 알고리즘 연구)

  • Jeong, Hong-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.5
    • /
    • pp.587-594
    • /
    • 2012
  • IEEE 802.15.6 standard technology is proposed for low-power wireless communication in, on and around body, where vital signs such as pulse, blood pressure, ECG, and EEG signals are transmitted as a type of data packet. Especially, these vital signs should be delivered in real time, so that the latency from slave node to hub node can be one of the pivotal performance requirements. However, in the case of IEEE 802.15.6 technology data retransmission caused by transmission failure can be done in the next superframe. In order to overcome this limitation, we propose an adaptive polling algorithm for IEEE 802.15.6 technology. The proposing algorithm makes the hub to look for an appropriate time period in order to make data retransmission within the superframe. Through the performance evaluation, the proposing algorithm achieves a 61% and a 73% latency reduction compared to those of IEEE 802.15.6 technology in the environment of 70% traffic offered load with 10ms and 100ms superframe period. In addition, the proposing algorithm prevents bursty traffic transmission condition caused by mixing retransmission traffic with the traffic reserved for transmission. Through the proposing adaptive polling algorithm, it will be possible to transmit time-sensitive vital signs without severe traffic delay.

Performance Analysis of IPACT MAC Protocol for Gigabit Ethernet-PON (Gigabit Ethernet-PON을 위한 IPACT 매체접근제어 방식의 성능분석)

  • Shin Ji hye;Lee Jae yong;Kim Byung chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3B
    • /
    • pp.114-129
    • /
    • 2005
  • In this paper, we examine Interleaved Polling with Adaptive Cycle Time (IPACT) algorithm which was proposed to control upstream traffic for Gigabit Ethernet-PONs, and we analyze the performance of the gated service and the limited service of the IPACT mathematically. For the mathematical performance analysis, we model IPACT algorithm as a polling system and use mean-value analysis. We divide arrival rate λ value into three regions and analyze each region accordingly. We obtain average packet delay, average queue size and average cycle time of both the gated and the limited service. We compare analytical results with simulation to verify the accuracy of the mathematical analysis. Upon now, simulation analysis have been used to evaluate the performance of EPONs, which require much time sud effort. Mathematical analysis can be widely used in the design of EPON systems since system designers can obtain various performance results rapidly.

Design and Performance Evaluation of a Media Access Control Algorithm supporting Weighted Fairness among Users in Ethernet PON (Ethernet PON에서 가입자간 가중치 공평성을 보장하는 매체접근 제어 알고리즘의 설계 및 성능 분석)

  • 최은영;이재용;김병철;권영미
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.45-53
    • /
    • 2004
  • This paper proposes and analyzes a new media access control (MAC) scheduling algorithm, “Interleaved Polling with Deficit Round Robin (IPDRR)” that supports weighted fairness among ONUs in Ethernet Passive Optical Network (PON). The purpose of the proposed IPDRR algerian is not only to eliminate the unused bandwidth of upstream ONU traffic, but also to provide weighted fair sharing of upstream bandwidth among ONUs in Ethernet PON systems. Simulation results show that the IPDRR improves the utilization of upstream channel by removing the unused bandwidth and provides weighted fairness among ONUs, although the IPACT scheduling is unfair according to traffic characteristics.

Energy-aware Dynamic Frequency Scaling Algorithm for Polling based Communication Systems (폴링기반 통신 시스템을 위한 에너지 인지적인 동적 주파수 조절 알고리즘)

  • Cho, Mingi;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1405-1411
    • /
    • 2022
  • Power management is still an important issue in embedded environments as hardware advances like high-performance processors. Power management methods such as DVFS control CPU frequencies in an adaptive manner for efficient power management in polling-based I/O programs such as network communication. This paper presents the problems of the existing power management method and proposes a new power management method. Through this, it is possible to reduce electric consumption by increasing the polling cycle in situations where the frequency of data reception is low, and on the contrary, in situations where data reception is frequent, it can operate at the maximum frequency without performance degradation. After implementing this as a code layer on the embedded board and observing it through Atmel's Power Debugger, the proposed method showed a performance improvement of up to 30% in energy consumption compared to the existing power management method.

Adaptive V1-MT model for motion perception

  • Li, Shuai;Fan, Xiaoguang;Xu, Yuelei;Huang, Jinke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.371-384
    • /
    • 2019
  • Motion perception has been tremendously improved in neuroscience and computer vision. The baseline motion perception model is mediated by the dorsal visual pathway involving the cortex areas the primary visual cortex (V1) and the middle temporal (V5 or MT) visual area. However, few works have been done on the extension of neural models to improve the efficacy and robustness of motion perception of real sequences. To overcome shortcomings in situations, such as varying illumination and large displacement, an adaptive V1-MT motion perception (Ad-V1MTMP) algorithm enriched to deal with real sequences is proposed and analyzed. First, the total variation semi-norm model based on Gabor functions (TV-Gabor) for structure-texture decomposition is performed to manage the illumination and color changes. And then, we study the impact of image local context, which is processed in extra-striate visual areas II (V2), on spatial motion integration by MT neurons, and propose a V1-V2 method to extract the image contrast information at a given location. Furthermore, we take feedback inputs from V2 into account during the polling stage. To use the algorithm on natural scenes, finally, multi-scale approach has been used to handle the frequency range, and adaptive pyramidal decomposition and decomposed spatio-temporal filters have been used to diminish computational cost. Theoretical analysis and experimental results suggest the new Ad-V1MTMP algorithm which mimics human primary motion pathway has universal, effective and robust performance.