• 제목/요약/키워드: adaptive neuro-fuzzy inference system (ANFIS)

검색결과 141건 처리시간 0.027초

기계학습모델을 이용한 저수지 수위 예측 (Reservoir Water Level Forecasting Using Machine Learning Models)

  • 서영민;최은혁;여운기
    • 한국농공학회논문집
    • /
    • 제59권3호
    • /
    • pp.97-110
    • /
    • 2017
  • This study investigates the efficiencies of machine learning models, including artificial neural network (ANN), generalized regression neural network (GRNN), adaptive neuro-fuzzy inference system (ANFIS) and random forest (RF), for reservoir water level forecasting in the Chungju Dam, South Korea. The models' efficiencies are assessed based on model efficiency indices and graphical comparison. The forecasting results of the models are dependent on lead times and the combination of input variables. For lead time t = 1 day, ANFIS1 and ANN6 models yield superior forecasting results to RF6 and GRNN6 models. For lead time t = 5 days, ANN1 and RF6 models produce better forecasting results than ANFIS1 and GRNN3 models. For lead time t = 10 days, ANN3 and RF1 models perform better than ANFIS3 and GRNN3 models. It is found that ANN model yields the best performance for all lead times, in terms of model efficiency and graphical comparison. These results indicate that the optimal combination of input variables and forecasting models depending on lead times should be applied in reservoir water level forecasting, instead of the single combination of input variables and forecasting models for all lead times.

Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

  • Mandal, Sukomal;Rao, Subba;N., Harish;Lokesha, Lokesha
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.112-122
    • /
    • 2012
  • The damage analysis of coastal structure is very important as it involves many design parameters to be considered for the better and safe design of structure. In the present study experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models are constructed using experimental data sets to predict the damage level of non-reshaped berm breakwater. The experimental data are used to train ANN, SVM and ANFIS models and results are determined in terms of statistical measures like mean square error, root mean square error, correla-tion coefficient and scatter index. The result shows that soft computing techniques i.e., ANN, SVM and ANFIS can be efficient tools in predicting damage levels of non reshaped berm breakwater.

Prediction of maximum shear modulus (Gmax) of granular soil using empirical, neural network and adaptive neuro fuzzy inference system models

  • Hajian, Alireza;Bayat, Meysam
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.291-304
    • /
    • 2022
  • Maximum shear modulus (Gmax or G0) is an important soil property useful for many engineering applications, such as the analysis of soil-structure interactions, soil stability, liquefaction evaluation, ground deformation and performance of seismic design. In the current study, bender element (BE) tests are used to evaluate the effect of the void ratio, effective confining pressure, grading characteristics (D50, Cu and Cc), anisotropic consolidation and initial fabric anisotropy produced during specimen preparation on the Gmax of sand-gravel mixtures. Based on the tests results, an empirical equation is proposed to predict Gmax in granular soils, evaluated by the experimental data. The artificial neural network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) models were also applied. Coefficient of determination (R2) and Root Mean Square Error (RMSE) between predicted and measured values of Gmax were calculated for the empirical equation, ANN and ANFIS. The results indicate that all methods accuracy is high; however, ANFIS achieves the highest accuracy amongst the presented methods.

적응형 뉴로-퍼지(ANFIS)를 이용한 건축공사비 예측 (Prediction of Building Construction Project Costs Using Adaptive Neuro-Fuzzy Inference System(ANFIS))

  • 윤석헌;박우열
    • 한국건축시공학회지
    • /
    • 제23권1호
    • /
    • pp.103-111
    • /
    • 2023
  • 건설 프로젝트의 초기단계에서 공사비를 정확하게 예측하는 것은 프로젝트를 성공적으로 수행하기 위해 매우 중요하다. 본 연구에서는 ANFIS 모델을 활용하여 건설프로젝트의 초기단계에 건축공사비를 예측할 수 있는 모델을 제시하였다. 모델의 활용도를 높이기 위해 공개된 공사비 데이터를 활용하였으며 프로젝트 초기단계의 제한된 정보를 바탕으로 예측할 수 있는 모델을 제시하고자 하였다. ANFIS와 관련된 기존 연구를 분석하여 최근의 동향을 파악하였으며 ANFIS의 기본 구조를 고찰한 후 건축공사비 예측을 위한 ANFIS 모델을 제시하였다. ANFIS의 모델의 소속함수의 종류와 개수에 따라 달라지는 예측 성능을 분석하여 가장 성능이 우수한 모델을 제시하였으며, 대표적인 기계학습 모델의 예측 정확도와 비교분석하였다. 적용결과 ANFIS 모델을 다른 기계학습 모델과 비교한 결과 동등 이상으로 성능을 나타내 프로젝트 초기단계 공사비 예측에 적용 가능할 것으로 판단된다.

Application of ANFIS Power Control for Downlink CDMA-Based LMDS Systems

  • Lee, Ze-Shin;Tsay, Mu-King;Liao, Chien-Hsing
    • ETRI Journal
    • /
    • 제31권2호
    • /
    • pp.182-192
    • /
    • 2009
  • Rain attenuation and intercell interference are two crucial factors in the performance of broadband wireless access networks such as local multipoint distribution systems (LMDS) operating at frequencies above 20 GHz. Power control can enhance the performance of downlink CDMA-based LMDS systems by reducing intercell interference under clear sky conditions; however, it may damage system performance under rainy conditions. To ensure robust operation under both clear sky and rainy conditions, we propose a novel power-control scheme which applies an adaptive neuro-fuzzy inference system (ANFIS) for downlink CDMA-based LMDS systems. In the proposed system, the rain rate and the number of users are two inputs of the fuzzy inference system, and output is defined as channel quality, which is applied in the power control scheme to adjust the power control region. Moreover, ITU-R P.530 is employed to estimate the rain attenuation. The influence of the rain rate and the number of users on the distance-based power control (DBPC) scheme is included in the simulation model as the training database. Simulation results indicate that the proposed scheme improves the throughput of the DBPC scheme.

  • PDF

Neuro-Fuzzy System을 활용한 월댐유입량 예측에 관한 연구 (A Study on Monthly Dam Infow Forecasts by Using Neuro-fuzzy System)

  • 정대명;배덕효
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.1280-1284
    • /
    • 2004
  • 본 논문에서는 월 댐유입량을 예측하는데 있어서 뉴로-퍼지 시스템의 적용성을 검토하였다. 뉴로-퍼지 알고리즘으로 퍼지이론과 신경망이론의 결합형태인 ANFIS(Adaptive Neuro-Fuzzy Inference System)를 이용하여 모형을 구성하였다. ANFIS의 공간분야에 의한 제어규칙의 선정에 있어 퍼지변수가 증가함에 따라 제어규칙이 기하급수적으로 증가하는 단점을 해결하기 위해 퍼지 클러스터링(Fuzzy flustering)방법 중 하나인 차감 클러스터링(Subtractive Clustering)을 사용하였다. 또한 본 연구에서는 기후인자들을 인력으로 하여 모형을 구성하였으며 각각 학습기간과 검정기간으로 나누어 학습기간에는 모형의 매개변수 최적화를, 검정기간에는 최적화된 모형의 매개변수를 검정하는 순으로 연구를 수행하였다. 예측 길과, ANFIS는 댐유입량 예측시 입력자료의 종류가 많아질수록 예측능력 더욱 정확한 것으로 판단된다.

  • PDF

뉴로-퍼지 시스템을 이용한 프리텐션 콘크리트 부재의 전달길이 예측 (Prediction of Transfer Lengths in Pretensioned Concrete Members Using Neuro-Fuzzy System)

  • 김민수;한선진;조해창;오재열;김강수
    • 콘크리트학회논문집
    • /
    • 제28권6호
    • /
    • pp.723-731
    • /
    • 2016
  • 프리텐션 콘크리트 부재에서 강연선의 유효프리스트레스를 확보하기 위해서는 부재의 단부부터 특정 부착길이가 필요하며, 이를 전달길이라고 정의한다. 그러나, 강연선과 콘크리트 사이의 복잡한 부착 메커니즘으로 인해 결정론적인 방법으로 전달길이를 산정하는 기존 방법들은 많은 불확실성을 내포하고 있으며, 안전측의 해석결과를 제공하는 것에 초점이 맞추어져 있다. 따라서, 이 연구에서는 여러 영향인자들의 복잡한 메커니즘을 보다 효과적으로 고려하여 정확한 전달길이를 산정하기 위해 뉴로-퍼지 시스템의 방법 중 하나인 ANFIS를 도입하였다. 기존 연구로부터 총 253개의 실험체를 수집하여 ANFIS 알고리즘을 훈련시켰으며, 훈련된 ANFIS 알고리즘은 전달길이를 매우 정확히 예측하였다. 또한, ANFIS 전달길이 평가결과를 토대로, 변수분석과 차원해석을 수행하여 보다 간략화된 전달길이 산정식을 제안하였으며, 제안식은 ANFIS 해석결과와 거의 대등한 정확도를 보여주었다.

A generalized ANFIS controller for vibration mitigation of uncertain building structure

  • Javad Palizvan Zand;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.231-242
    • /
    • 2023
  • A novel combinatorial type-2 adaptive neuro-fuzzy inference system (T2-ANFIS) and robust proportional integral derivative (PID) control framework for intelligent vibration mitigation of uncertain structural system is introduced. The fuzzy logic controllers (FLCs), are designed independently of the mathematical model of the system. The type-1 FLCs, have a limited ability to reduce the effect of uncertainty, due to their fuzzy sets with a crisp degree of membership. In real applications, the consequent part of the fuzzy rules is uncertain. The type-2 FLCs, are robust to the fuzzy rules and the process parameters due to the fuzzy degree of membership functions and footprint of uncertainty (FOU). The adaptivity of the proposed method is provided with the optimum tuning of the parameters using the neural network training algorithms. In our approach, the PID control force is obtained using the generalized type-2 neuro-fuzzy in such a way that the stability and robustness of the controller are guaranteed. The robust performance and stability of the presented framework are demonstrated in a numerical study for an eleven-story seismically-excited building structure combined with an active tuned mass damper (ATMD). The results indicate that the introduced type-2 neuro-fuzzy PID control scheme is effective to attenuate plant states in the presence of the structured and unstructured uncertainties, compared to the conventional, type-1 FLC, type-2 FLC, and type-1 neuro-fuzzy PID controllers.

Evaluation of Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means based ANFIS System in Diagnosis of Alzheimer

  • Kour, Haneet;Manhas, Jatinder;Sharma, Vinod
    • Journal of Multimedia Information System
    • /
    • 제6권2호
    • /
    • pp.87-90
    • /
    • 2019
  • Machine learning techniques have been applied in almost all the domains of human life to aid and enhance the problem solving capabilities of the system. The field of medical science has improved to a greater extent with the advent and application of these techniques. Efficient expert systems using various soft computing techniques like artificial neural network, Fuzzy Logic, Genetic algorithm, Hybrid system, etc. are being developed to equip medical practitioner with better and effective diagnosing capabilities. In this paper, a comparative study to evaluate the predictive performance of subtractive clustering based ANFIS hybrid system (SCANFIS) with Fuzzy C-Means (FCM) based ANFIS system (FCMANFIS) for Alzheimer disease (AD) has been taken. To evaluate the performance of these two systems, three parameters i.e. root mean square error (RMSE), prediction accuracy and precision are implemented. Experimental results demonstrated that the FCMANFIS model produce better results when compared to SCANFIS model in predictive analysis of Alzheimer disease (AD).

뉴로-퍼지기법을 이용한 송전선로의 고장검출 (Fault Detection of Transmission Line using Neuro-fuzzy Scheme)

  • 전병준;박철원;신명철;이복구;권명현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1046-1049
    • /
    • 1998
  • This paper deals with the new fault detection technique for transmission line using Neuro-fuzzy Scheme. Neuro-fuzzy Scheme is ANFIS(Adaptive-network Fuzzy Inference System) based on fusion of fuzzy logic and neural networks. The proposed scheme has five layers. Each layer is the component of fuzzy Inference system and performs different action. Using learning method of neural network, fuzzy premise and consequent parameters is tuned properly.

  • PDF