• Title/Summary/Keyword: adaptive measurement fusion

Search Result 8, Processing Time 0.023 seconds

Centralized Kalman Filter with Adaptive Measurement Fusion: its Application to a GPS/SDINS Integration System with an Additional Sensor

  • Lee, Tae-Gyoo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.444-452
    • /
    • 2003
  • An integration system with multi-measurement sets can be realized via combined application of a centralized and federated Kalman filter. It is difficult for the centralized Kalman filter to remove a failed sensor in comparison with the federated Kalman filter. All varieties of Kalman filters monitor innovation sequence (residual) for detection and isolation of a failed sensor. The innovation sequence, which is selected as an indicator of real time estimation error plays an important role in adaptive mechanism design. In this study, the centralized Kalman filter with adaptive measurement fusion is introduced by means of innovation sequence. The objectives of adaptive measurement fusion are automatic isolation and recovery of some sensor failures as well as inherent monitoring capability. The proposed adaptive filter is applied to the GPS/SDINS integration system with an additional sensor. Simulation studies attest that the proposed adaptive scheme is effective for isolation and recovery of immediate sensor failures.

Adaptive Error Compensation of Heterodyne Laser Interferometer using DFNN (DFNN을 이용한 헤테로다인 레이저 간섭계의 적응형 오차 보정)

  • Heo, Gun-Haeng;Lee, Woo-Ram;You, Kwan-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1042-1047
    • /
    • 2008
  • As an ultra-precision measurement system the heterodyne laser interferometer plays an important role in semiconductor industry. However the errors of environment and nonlinearity which are caused by air refraction and frequency-mixing separately reduce the accuracy of displacement measurement. In this paper we propose a DFNN(data fusion and neural network) method for error compensation. As a hybrid method of data fusion and neural network, DFNN method reduces the environmental and nonlinear error simultaneously. The effectiveness of the proposed error compensation method is proved through experimental results.

Performance Enhancement of Attitude Estimation using Adaptive Fuzzy-Kalman Filter (적응형 퍼지-칼만 필터를 이용한 자세추정 성능향상)

  • Kim, Su-Dae;Baek, Gyeong-Dong;Kim, Tae-Rim;Kim, Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2511-2520
    • /
    • 2011
  • This paper describes the parameter adjustment method of fuzzy membership function to improve the performance of multi-sensor fusion system using adaptive fuzzy-Kalman filter and cross-validation. The adaptive fuzzy-Kanlman filter has two input parameters, variation of accelerometer measurements and residual error of Kalman filter. The filter estimates system noise R and measurement noise Q, then changes the Kalman gain. To evaluate proposed adaptive fuzzy-Kalman filter, we make the two-axis AHRS(Attitude Heading Reference System) using fusion of an accelerometer and a gyro sensor. Then we verified its performance by comparing to NAV420CA-100 to be used in various fields of airborne, marine and land applications.

Integration Algorithm of GPS/SDINS/ST for a Space Navigation (우주항법을 위한 GPS/SDINS/ST 결합 알고리듬)

  • Yi, Chang-Yong;Cho, Kyeum-Rae;Lee, Dae-Woo;Cho, Yun-Cheol
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • A GPS/SDINS/ST(Star Tracker) integrated sensor algorithm is more robust than the GPS/SDINS and the ST/SDINS systems on exploration of other planets. Most of the advanced studies shown that GPS/SDINS/ST integrated sensor with centralized Kalman filter was more accurate than those 2 integrated systems. The system, however, consist of a single filter, it is vulnerable to defects on failed data. To improve the problem, we work out a study using federated Kalman filter(No-Reset mode) and centralized Kalman filter with adaptive measurement fusion which known as robustness on fault. The simulation results show that the debasing influences are reduced and the computation is enable at least 100Hz. Further researches that the initial calibration in accordance with observability and applying the exploration trajectory are needed.

Bezier Curve-Based Path Planning for Robust Waypoint Navigation of Unmanned Ground Vehicle (무인차량의 강인한 경유점 주행을 위한 베지어 곡선 기반 경로 계획)

  • Lee, Sang-Hoon;Chun, Chang-Mook;Kwon, Tae-Bum;Kang, Sung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.429-435
    • /
    • 2011
  • This paper presents a sensor fusion-based estimation of heading and a Bezier curve-based motion planning for unmanned ground vehicle. For the vehicle to drive itself autonomously and safely, it should estimate its pose with sufficient accuracy in reasonable processing time. The vehicle should also have a path planning algorithm that enables to adapt to various situations on the road, especially at intersections. First, we address a sensor fusion-based estimation of the heading of the vehicle. Based on extended Kalman filter, the algorithm estimates the heading using the GPS, IMU, and wheel encoders considering the reliability of each sensor measurement. Then, we propose a Bezier curve-based path planner that creates several number of path candidates which are described as Bezier curves with adaptive control points, and selects the best path among them that has the maximum probability of passing through waypoints or arriving at target points. Experiments under various outdoor conditions including at intersections, verify the reliability of our algorithm.

Evaluating LIMU System Quality with Interval Evidence and Input Uncertainty

  • Xiangyi Zhou;Zhijie Zhou;Xiaoxia Han;Zhichao Ming;Yanshan Bian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.2945-2965
    • /
    • 2023
  • The laser inertial measurement unit is a precision device widely used in rocket navigation system and other equipment, and its quality is directly related to navigation accuracy. In the quality evaluation of laser inertial measurement unit, there is inevitably uncertainty in the index input information. First, the input numerical information is in interval form. Second, the index input grade and the quality evaluation result grade are given according to different national standards. So, it is a key step to transform the interval information input by the index into the data form consistent with the evaluation result grade. In the case of uncertain input, this paper puts forward a method based on probability distribution to solve the problem of asymmetry between the reference grade given by the index and the evaluation result grade when evaluating the quality of laser inertial measurement unit. By mapping the numerical relationship between the designated reference level and the evaluation reference level of the index information under different distributions, the index evidence symmetrical with the evaluation reference level is given. After the uncertain input information is transformed into evidence of interval degree distribution by this method, the information fusion of interval degree distribution evidence is carried out by interval evidential reasoning algorithm, and the evaluation result is obtained by projection covariance matrix adaptive evolution strategy optimization. Taking a five-meter redundant laser inertial measurement unit as an example, the applicability and effectiveness of this method are verified.

Vehicular Pitch Estimation Algorithm with ACF/IMMKF Based on GPS/IMU/OBD Data Fusion (GPS/IMU/OBD 융합기반 ACF/IMMKF를 이용한 차량 Pitch 추정 알고리즘)

  • Kim, Ju-won;Lee, Myung-su;Lee, Sang-sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1837-1845
    • /
    • 2015
  • The longitudinal velocity is necessary for accurate vehicular positioning in urban environment. The pitch angle, which is a road slope, should be calculated to acquire the longitudinal velocity. However, it is impossible to consider very accurate pitch, when using a sensor and an algorithm. That's why process noise and positioning stimation error of IMU should be adjusted to the driving environment and fuse GPS, OBD data with ACF which consist of AKF, CF in this paper. Then, final pitch angle which is appropriate for driving environment is estimated by IMMKF in order to optimize the system model according to road slope models.

Environment Adaptive Sound Localization for Multi-Channel Surround Sound System

  • Lee, Yoon Bae;Mariappan, Vinayagam;Cho, Juphil;Lee, Seon Hee
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.21-25
    • /
    • 2016
  • Recent development in multi-channel surround is emerging in various formats to provide better stereoscopic and sound effects to consumers in recent broadcasting. The ability sound localize the sound sources in space is most considerable design factor on multi-channel surround system for human earing perception model. However, this paper propose the change of the sound localization according to the spacing of the speakers, which is not covered in the existing research focus on sound system design. Presently the sound system uses the position and number of the speakers to localize the sound. In the multi-channel surround environment, the proposed design uses the sound localization is caused by the directional characteristics of the speaker, the distance between the speakers and the distance between the listener and the speaker according to the directivity is required. The proposed design is simulated using virtual measurement with MATLAB simulation environment and performances are measured.