• Title/Summary/Keyword: adaptive linear extrapolation

Search Result 3, Processing Time 0.02 seconds

A Dynamic Hand Gesture Recognition System Incorporating Orientation-based Linear Extrapolation Predictor and Velocity-assisted Longest Common Subsequence Algorithm

  • Yuan, Min;Yao, Heng;Qin, Chuan;Tian, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4491-4509
    • /
    • 2017
  • The present paper proposes a novel dynamic system for hand gesture recognition. The approach involved is comprised of three main steps: detection, tracking and recognition. First, the gesture contour captured by a 2D-camera is detected by combining the three-frame difference method and skin-color elliptic boundary model. Then, the trajectory of the hand gesture is extracted via a gesture-tracking algorithm based on an occlusion-direction oriented linear extrapolation predictor, where the gesture coordinate in next frame is predicted by the judgment of current occlusion direction. Finally, to overcome the interference of insignificant trajectory segments, the longest common subsequence (LCS) is employed with the aid of velocity information. Besides, to tackle the subgesture problem, i.e., some gestures may also be a part of others, the most probable gesture category is identified through comparison of the relative LCS length of each gesture, i.e., the proportion between the LCS length and the total length of each template, rather than the length of LCS for each gesture. The gesture dataset for system performance test contains digits ranged from 0 to 9, and experimental results demonstrate the robustness and effectiveness of the proposed approach.

Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading

  • Alshoaibi, Abdulnaser M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.283-299
    • /
    • 2010
  • This paper addresses the numerical simulation of fatigue crack growth in arbitrary 2D geometries under constant amplitude loading by the using a new finite element software. The purpose of this software is on the determination of 2D crack paths and surfaces as well as on the evaluation of components Lifetimes as a part of the damage tolerant assessment. Throughout the simulation of fatigue crack propagation an automatic adaptive mesh is carried out in the vicinity of the crack front nodes and in the elements which represent the higher stresses distribution. The fatigue crack direction and the corresponding stress-intensity factors are estimated at each small crack increment by employing the displacement extrapolation technique under facilitation of singular crack tip elements. The propagation is modeled by successive linear extensions, which are determined by the stress intensity factors under linear elastic fracture mechanics (LEFM) assumption. The stress intensity factors range history must be recorded along the small crack increments. Upon completion of the stress intensity factors range history recording, fatigue crack propagation life of the examined specimen is predicted. A consistent transfer algorithm and a crack relaxation method are proposed and implemented for this purpose. Verification of the predicted fatigue life is validated with relevant experimental data and numerical results obtained by other researchers. The comparisons show that the program is capable of demonstrating the fatigue life prediction results as well as the fatigue crack path satisfactorily.

ALTERNATED INERTIAL RELAXED TSENG METHOD FOR SOLVING FIXED POINT AND QUASI-MONOTONE VARIATIONAL INEQUALITY PROBLEMS

  • A. E. Ofem;A. A. Mebawondu;C. Agbonkhese;G. C. Ugwunnadi;O. K. Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.131-164
    • /
    • 2024
  • In this research, we study a modified relaxed Tseng method with a single projection approach for solving common solution to a fixed point problem involving finite family of τ-demimetric operators and a quasi-monotone variational inequalities in real Hilbert spaces with alternating inertial extrapolation steps and adaptive non-monotonic step sizes. Under some appropriate conditions that are imposed on the parameters, the weak and linear convergence results of the proposed iterative scheme are established. Furthermore, we present some numerical examples and application of our proposed methods in comparison with other existing iterative methods. In order to show the practical applicability of our method to real word problems, we show that our algorithm has better restoration efficiency than many well known methods in image restoration problem. Our proposed iterative method generalizes and extends many existing methods in the literature.