• Title/Summary/Keyword: adaptive gain control

Search Result 266, Processing Time 0.027 seconds

HIPI Controller of IPMSM Drive using ALM-FNN (ALM-FNN을 이용한 IPMSM 드라이브의 HIPI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.57-66
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper proposes hybrid intelligent-PI(HIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme, The validity of the proposed controller is verified by results at different dynamic operating conditions.

Fuzzy PD plus I Controller of a CSTR for Temperature Control

  • Lee, Joo-Yeon;So, Hye-Rim;Lee, Yun-Hyung;Oh, Sea-June;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.563-569
    • /
    • 2015
  • A chemical reaction occurring in CSTR (Continuous Stirred Tank Reactor) is significantly affected by the concentration, temperature, pressure, and reacting time of materials, and thus it has strong nonlinear and time-varying characteristics. Also, when an existing linear PID controller with fixed gain is used, the performance could deteriorate or could be unstable if the system parameters change due to the change in the operating point of CSTR. In this study, a technique for the design of a fuzzy PD plus I controller was proposed for the temperature control of a CSTR process. In the fuzzy PD plus I controller, a linear integral controller was added to a fuzzy PD controller in parallel, and the steady-state performance could be improved based on this. For the fuzzy membership function, a Gaussian type was used; for the fuzzy inference, the Max-Min method of Mamdani was used; and for the defuzzification, the center of gravity method was used. In addition, the saturation state of the actuator was also considered during controller design. The validity of the proposed method was examined by comparing the set-point tracking performance and the robustness to the parameter change with those of an adaptive controller and a nonlinear proportional-integral-differential controller.

Performance Improvement of Packet Loss Concealment Algorithm in G.711 Using Speech Characteristics (음성 특성을 이용한 G.711 패킷 손실 은닉 알고리즘의 성능개선)

  • Han Seung-Ho;Kim Jin-Sul;Lee Hyun-Woo;Ryu Won;Hahn Min-Soo
    • MALSORI
    • /
    • no.57
    • /
    • pp.175-189
    • /
    • 2006
  • Because a packet loss brings about degradation of speech quality, VoIP speech coders have PLC (Packet Loss Concealment) mechanism. G.711, which is a mandatory VoIP speech coder, also has the PLC algorithm based on pitch period replication. However, it is not robust to burst losses. Thus, we propose two methods to improve the performance of the original PLC algorithm in G.711. One adaptively utilizes voiced/unvoiced information of adjacent good frames regarding to the current lost frame. The other is based on adaptive gain control according to energy variation across the frames. We evaluate the performance of the proposed PLC algorithm by measuring a PESQ value under different random and burst packet loss simulating conditions. It is shown from the experiments that the performance of the proposed PLC algorithm outperforms that of PLC employed in ITU-T Recommendation G.711.

  • PDF

Labview FPGA Implementation of IGC Algorithm for Real Time Noise Cancelation (실기간 소음제거를 위한 IGC Algorithm의 LabVIEW FPGA 구현)

  • Kim, Chun-Sik;Lee, Chae-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.183-189
    • /
    • 2011
  • The LMS(Least Mean Square) algorithm is generally used because of tenacity, high mating spots and simplicity of realization. But the LMS algorithm has trade-off between nonuniform collect and EMSE(Excess Mean Square Error). To overcome this weakness, variable step size is used widely but it needs a lot of calculation load. In this paper we consider new algorithm, which can reduce calculations and adapt in case of environment changes, uses original signal and noise signal of IGC(Instantaneous Gain Control). For the real time processing of IGC algorithm, we remove the logarithmic function. The performance of proposed algorithm is tested to adaptive noise canceller in automobile. We show implemented LabVIEW FPGA system of IGC algorithm is more efficient than others.

Hybrid PI Controller for Performance Improvement of IPMSM Drive (IPMSM 드라이브의 성능 향상을 위한 하이브리드 PI 제어기)

  • Nam, Su-Myeong;Lee, Jung-Chul;Lee, Hong-Gyun;Choi, Jung-Sik;Ko, Jae-Sub;Park, Gi-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.191-193
    • /
    • 2005
  • This paper presents Hybrid PI controller of IPMSM drive using fuzzy adaptive mechanism(FAM) control. To increase the robustness, fixed gam PI controller, Hybrid PI controller proposes a new method based self tuning PI controller. Hybrid PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

A Fast and Robust Grid Synchronization Algorithm of a Three-phase Converters under Unbalanced and Distorted Utility Voltages

  • Kim, Kwang-Seob;Hyun, Dong-Seok;Kim, Rae-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1101-1107
    • /
    • 2017
  • In this paper, a robust and fast grid synchronization method of a three-phase power converter is proposed. The amplitude and phase information of grid voltages are essential for power converters to be properly connected into the utility. The phase-lock-loop in synchronous reference frame has been widely adopted for the three-phase converter system since it shows a satisfactory performance under balanced grid voltages. However, power converters often operate under abnormal grid conditions, i.e. unbalanced by grid faults and frequency variations, and thus a proper active and reactive power control cannot be guaranteed. The proposed method adopts a second order generalized integrator in synchronous reference frame to detect positive sequence components under unbalanced grid voltages. The proposed method has a fast and robust performance due to its higher gain and frequency adaptive capability. Simulation and experimental results show the verification of the proposed synchronization algorithm and the effectiveness to detect positive sequence voltage.

Hardware Architecture of Automatic Exposure Algorithm for CMOS Image Sensor (CMOS Image Sensor용 자동노출 알고리즘의 하드웨어 구조)

  • Mo, Sung-Wook;Park, Hyun-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1497-1502
    • /
    • 2009
  • AE(Auto exposure) is a function to maintain the exposure value of a captured image constant, and is one of the crucial functionalities of a CIS-based mobile camera. Generally AE is implemented in software, requiring a CPU and a ROM to store the corresponding software. This approach increases the hardware size at the cost of increased flexibility. In this paper, we propose an AE algorithm featuring variable frame-rate and adaptive analog gain control, as well as a FSM-based hardware architecture for a CIS-based mobile camera.

Optimum solar energy harvesting system using artificial intelligence

  • Sunardi Sangsang Sasmowiyono;Abdul Fadlil;Arsyad Cahya Subrata
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.996-1006
    • /
    • 2023
  • Renewable energy is promoted massively to overcome problems that fossil fuel power plants generate. One popular renewable energy type that offers easy installation is a photovoltaic (PV) system. However, the energy harvested through a PV system is not optimal because influenced by exposure to solar irradiance in the PV module, which is constantly changing caused by weather. The maximum power point tracking (MPPT) technique was developed to maximize the energy potential harvested from the PV system. This paper presents the MPPT technique, which is operated on a new high-gain voltage DC/DC converter that has never been tested before for the MPPT technique in PV systems. Fuzzy logic (FL) was used to operate the MPPT technique on the converter. Conventional and adaptive perturb and observe (P&O) techniques based on variables step size were also used to operate the MPPT. The performance generated by the FL algorithm outperformed conventional and variable step-size P&O. It is evident that the oscillation caused by the FL algorithm is more petite than variables step-size and conventional P&O. Furthermore, FL's tracking speed algorithm for tracking MPP is twice as fast as conventional P&O.

A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

  • Jung, Jin-Woo;Dang, Dong Quang;Vu, Nga Thi-Thuy;Justo, Jackson John;Do, Ton Duc;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.753-762
    • /
    • 2015
  • This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC method.

Parameter Estimation and Control for Apparatus of Container Crane;An Experimental Approach (모형 컨테이너 크레인의 파라미터 추정 및 제어;실험적 접근)

  • Lee, Yun-Hyung;Jin, Gang-Gyoo;So, Myung-Ok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.304-306
    • /
    • 2007
  • In this paper, we presents a scheme for the parameter estimation and optimal control scheme for apparatus of container crane system. For parameter estimation, first, we construct the open loop of the container crane system and estimate its parameters based on input-output data, a real-coded genetic algorithm(RCGA) and the model adjustment technique. The RCGA plays an important role in parameter estimation as an adaptive mechanism. For controller design, state feedback gain matrix is searched by another RCGA and the estimated model. The performance of the proposed methods are demonstrated through a set of simulation and experiments of the experimental apparatus.

  • PDF