• Title/Summary/Keyword: adaptive frame length

Search Result 21, Processing Time 0.024 seconds

Optimum Transmission Method with Energy Saving and Frame length on the Adaptive Modulation Mobile System (적응변조 이동통신 시스템의 프레임 길이와 에너지소비에 따른 적절한 전송방법)

  • Oh, Euy-Kyo
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.401-406
    • /
    • 2013
  • In this paper, the optimum transmission method is proposed to save the energy and to increase the throughput of the adaptive modulation mobile radio system with frame length control. Traditionally, adaptive modulation has been used to improve the throughput using the power margin of the system design. Considering the frame length vs energy saving and adaptive modulation, the optimum transmission method is proposed for hub and mobile station each.

Performance Analysis of Adaptive Frame Size Control Scheme in Wireless Networks (무선 통신망에서의 적응 프레임 길이 제어 방식의 성능 분석)

  • Kim, Eung-In
    • 전자공학회논문지 IE
    • /
    • v.47 no.2
    • /
    • pp.54-59
    • /
    • 2010
  • This paper suggests a new data link protocol with an adaptive frame length control scheme for wireless data networks which is subject to errors that occur with time variance. We analyze the proposed scheme under a two-state markov block interference(BI) model. Numerical results show that the proposed scheme can achieve high throughput performance for both dense and diffuse burst noise channels.

A Macroblock-Layer Rate Control with Adaptive Quantization Parameter Decision and Header Bits Length Estimation (적응적 양자화 파라미터 결정과 헤더 비트량 예측을 통한 매크로블록 단위 비트율 제어)

  • Kim, Se-Ho;Suh, Jae-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2C
    • /
    • pp.200-208
    • /
    • 2009
  • A macroblock layer rate control for H.264/AVC has the problem that allocated target bits for current frame occasionally are exhausted too fast due to inadequate quantization parameter assignment. In this case, the maximum permissible quantization parameter is used to encode for remaining macroblocks and it leads to degradation of the visual quality. In addition, the header bits length estimation algorithm used for quantization parameter assignment takes the average header bits length for the encoded macroblocks of the previous frame and the current frame. Therefore, it generates a big mismatch between the actually generated header bits length and the estimated header bits length. In this paper, we propose adaptive quantization parameter decision method to prevent early exhausting target bits during encoding the current frame by considering the number of macroblocks that have negative targets bits in previous frame and the improved header bits length estimation scheme for accurate quantization parameter decision.

An Efficient VLC Table Prediction Scheme for H.264 Using Weighting Multiple Reference Blocks (H.264 표준에서 가중된 다중 참조 블록을 이용한 효율적인 VLC 표 예측 방법)

  • Heo, Jin;Oh, Kwan-Jung;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.39-42
    • /
    • 2005
  • H.264, a recently proposed international video coding standard, has adopted context-based adaptive variable length coding (CAVLC) as the entropy coding tool in the baseline profile. By combining an adaptive variable length coding technique with context modeling, we can achieve a high degree of redundancy reduction. However, CAVLC in H.264 has weakness that the correct prediction rate of the variable length coding (VLC) table is low in a complex area, such as the boundary of an object. In this paper, we propose a VLC table prediction scheme considering multiple reference blocks; the same position block of the previous frame and the neighboring blocks of the current frame. The proposed algorithm obtains the new weighting values considering correctness of the VLC table for each reference block. Using this method, we can enhance the prediction rate of the VLC table and reduce the bit-rate.

  • PDF

A Digital Acoustic Transceiver for Underwater Acoustic Communication

  • Park Jong-Won;Choi Youngchol;Lim Yong-Kon;Kim Youngkil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3E
    • /
    • pp.109-114
    • /
    • 2005
  • In this paper, we present a phase coherent all-digital transceiver for underwater acoustic communication, which allows the system to reduce complexity and increase robustness in time variant underwater environments. It is designed in the digital domain except for transducers and amplifiers and implemented by using a multiple digital signal processors (DSPs) system. For phase coherent reception, conventional systems employed phase-locked loop (PLL) and delay-locked loop (DLL) for synchronization, but this paper suggests a frame synchronization scheme based on the quadrature receiver structure without using phase information. We show experimental results in the underwater anechoic basin at MOERI. The results show that the adaptive equalizer compensates frame synchronization error and the correction capability is dependent on the length of equalizer.

Lossless Audio Coding using Integer DCT

  • Kang MinHo;Lee Sung Woo;Park Se Hyoung;Shin Jaeho
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.114-117
    • /
    • 2004
  • This paper proposes a novel algorithm for hybrid lossless audio coding, which employs integer discrete cosine transform. The proposed algorithm divides the input signal into frames of a proper length, decorrelates the framed data using the integer DCT and finally entropy-codes the frame data. In particular, the adaptive Golomb-Rice coding method used for the entropy coding selects an optimal option which gives the best compression efficiency. Since the proposed algorithm uses integer operations, it significantly improves the computation speed in comparison with an algorithm using real or floating-point operations. When the coding algorithm is implemented in hardware, the system complexity as well as the power consumption is remarkably reduced. Finally, because each frame is independently coded and is byte-aligned with respect to the frame header, it is convenient to move, search, and edit the coded data.

  • PDF

On the Adaptive 3-dimensional Transform Coding Technique Employing the Variable Length Coding Scheme (가변 길이 부호화를 이용한 적응 3차원 변환 부호화 기법)

  • 김종원;이신호;이상욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.7
    • /
    • pp.70-82
    • /
    • 1993
  • In this paper, employing the 3-dimensional discrete cosine transform (DCT) for the utilization of the temporal correlation, an adaptive motion sequence coding technique is proposed. The energy distribution in a 3-D DCT block, due to the nonstationary nature of the image data, varies along the veritical, horizontal and temporal directions. Thus, aiming an adaptive system to local variations, adaptive procedures, such as the 3-D classification, the classified linear scanning technique and the VLC table selection scheme, have been implemented in our approach. Also, a hybrid structure which adaptively combines inter-frame coding is presented, and it is found that the adaptive hybrid frame coding technique shows a significant performance gain for a moving sequence which contains a relatively small moving area. Through an intensive computer simulation, it is demonstrated that, the performance of the proposed 3-D transform coding technique shows a close relation with the temporal variation of the sequence to be code. And the proposed technique has the advantages of skipping the computationally complex motion compensation procedure and improving the performance over the 2-D motion compensated transform coding technique for rates in the range of 0.5 ~ 1.0 bpp.

  • PDF

A Hybrid Transceiver for Underwater Acoustic Communication (수중음향 통신을 위한 혼합형 송수신기에 관한 연구)

  • Choi, Young-Chol;Kim, Sea-Moon;Park, Jong-Won;Kim, Seung-Geun;Lim, Yong-Gon;Kim, Sang-Tab
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.319-323
    • /
    • 2003
  • In this paper, we propose a hybrid transceiver for underwater acoustic communication, which allows the system to reduce complexity and increase robustness in time variant underwater channel environments. It is designed in the digital domain except for amplifiers and implemented by using a multiple digital signal processors (DSPs) system. The digital modulation technique is quadrature phase shift keying (QPSK) and frame synchronization is an energy (non-coherent) detection scheme based on the quadrature receiver structure. DSP implementation is based on block data parallel architecture (BDPA). We shaw experimental results in th? underwater anechoic basin at KRISO. The results indicate that the frame synchronization is performed without PLL. Also, we shaw that the adaptive equalizer can compensate frame synchronization error and the correction capability is dependent on the length of equalizer.

  • PDF

Adaptive-length pendulum smart tuned mass damper using shape-memory-alloy wire for tuning period in real time

  • Pasala, Dharma Theja Reddy;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.203-217
    • /
    • 2014
  • Due to the shift in paradigm from passive control to adaptive control, smart tuned mass dampers (STMDs) have received considerable attention for vibration control in tall buildings and bridges. STMDs are superior to tuned mass dampers (TMDs) in reducing the response of the primary structure. Unlike TMDs, STMDs are capable of accommodating the changes in primary structure properties, due to damage or deterioration, by tuning in real time based on a local feedback. In this paper, a novel adaptive-length pendulum (ALP) damper is developed and experimentally verified. Length of the pendulum is adjusted in real time using a shape memory alloy (SMA) wire actuator. This can be achieved in two ways i) by changing the amount of current in the SMA wire actuator or ii) by changing the effective length of current carrying SMA wire. Using an instantaneous frequency tracking algorithm, the dominant frequency of the structure can be tracked from a local feedback signal, then the length of pendulum is adjusted to match the dominant frequency. Effectiveness of the proposed ALP-STMD mechanism, combined with the STFT frequency tracking control algorithm, is verified experimentally on a prototype two-storey shear frame. It has been observed through experimental studies that the ALP-STMD absorbs most of the input energy associated in the vicinity of tuned frequency of the pendulum damper. The reduction of storey displacements up to 80 % when subjected to forced excitation (harmonic and chirp-signal) and a faster decay rate during free vibration is observed in the experiments.

A Low-Delay MAC(LD-MAC) protocol in Multi-Hop Wireless Sensor Networks (멀티 홉 무선 센서 네트워크에서 저 지연을 지원하는 MAC 프로토콜)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.452-458
    • /
    • 2014
  • In Wireless Sensor Networks the Medium access control (MAC) protocol has many challenges to solve such as reducing energy consumption, supporting QoS(quality of service) fairness, and reducing delivery delay. This paper proposed a low-delay supporting MAC protocol in multi-hop Wireless Sensor Networks. The proposed protocol uses the RB(rapid beacon) frame for reducing delivery delay. The RB frame is a modified IEEE 802.15.4 beacon frame. For sender adaptive-wakeup, the RB frame includes a seed number for determining of a receiver wakeup time. And for next hop receiver adaptive-wakeup, the RB frame includes the length of remaining data packet information. Results showed that our LD-MAC protocol outperformed other protocol in terms of data packet delivery delay.