• Title/Summary/Keyword: adaptive evolutionary computation

Search Result 24, Processing Time 0.017 seconds

Construction of Robust Bayesian Network Ensemble using a Speciated Evolutionary Algorithm (종 분화 진화 알고리즘을 이용한 안정된 베이지안 네트워크 앙상블 구축)

  • Yoo Ji-Oh;Kim Kyung-Joong;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1569-1580
    • /
    • 2004
  • One commonly used approach to deal with uncertainty is Bayesian network which represents joint probability distributions of domain. There are some attempts to team the structure of Bayesian networks automatically and recently many researchers design structures of Bayesian network using evolutionary algorithm. However, most of them use the only one fittest solution in the last generation. Because it is difficult to combine all the important factors into a single evaluation function, the best solution is often biased and less adaptive. In this paper, we present a method of generating diverse Bayesian network structures through fitness sharing and combining them by Bayesian method for adaptive inference. In order to evaluate performance, we conduct experiments on learning Bayesian networks with artificially generated data from ASIA and ALARM networks. According to the experiments with diverse conditions, the proposed method provides with better robustness and adaptation for handling uncertainty.

Evolutionary Programming of Applying Estimated Scale Parameters of the Cauchy Distribution to the Mutation Operation (코시 분포의 축척 매개변수를 추정하여 돌연변이 연산에 적용한 진화 프로그래밍)

  • Lee, Chang-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.9
    • /
    • pp.694-705
    • /
    • 2010
  • The mutation operation is the main operation in the evolutionary programming which has been widely used for the optimization of real valued function. In general, the mutation operation utilizes both a probability distribution and its parameter to change values of variables, and the parameter itself is subject to its own mutation operation which requires other parameters. However, since the optimal values of the parameters entirely depend on a given problem, it is rather hard to find an optimal combination of values of parameters when there are many parameters in a problem. To solve this shortcoming at least partly, if not entirely, in this paper, we propose a new mutation operation in which the parameter for the variable mutation is theoretically estimated from the self-adaptive perspective. Since the proposed algorithm estimates the scale parameter of the Cauchy probability distribution for the mutation operation, it has an advantage in that it does not require another mutation operation for the scale parameter. The proposed algorithm was tested against the benchmarking problems. It turned out that, although the relative superiority of the proposed algorithm from the optimal value perspective depended on benchmarking problems, the proposed algorithm outperformed for all benchmarking problems from the perspective of the computational time.

Multi-Objective Design Exploration for Multidisciplinary Design Optimization Problems

  • Obayashi Shigeru;Jeong Shinkyu;Chiba Kazuhisa
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.1-10
    • /
    • 2005
  • A new approach, Multi-Objective Design Exploration (MODE), is presented to address Multidisciplinary Design Optimization (MDO) problems by CFD-CSD coupling. MODE reveals the structure of the design space from the trade-off information and visualizes it as a panorama for Decision Maker. The present form of MODE consists of Kriging Model, Adaptive Range Multi Objective Genetic Algorithms, Analysis of Variance and Self-Organizing Map. The main emphasis of this approach is visual data mining. An MDO system using high fidelity simulation codes, Navier-Stokes solver and NASTRAN, has been developed and applied to a regional-jet wing design. Because the optimization system becomes very computationally expensive, only brief exploration of the design space has been performed. However, data mining result demonstrates that design knowledge can produce a good design even from the brief design exploration.

  • PDF

Self-tuning of Operator Probabilities in Genetic Algorithms (유전자 알고리즘에서 연산자 확률 자율조정)

  • Jung, Sung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.5
    • /
    • pp.29-44
    • /
    • 2000
  • Adaptation of operator probabilities is one of the most important and promising issues in evolutionary computation areas. This is because the setting of appropriate probabilities is not only very tedious and difficult but very important to the performance improvement of genetic algorithms. Many researchers have introduced their algorithms for setting or adapting operator probabilities. Experimental results in most previous works, however, have not been satisfiable. Moreover, Tuson have insisted that “the adaptation is not necessarily a good thing” in his papers[$^1$$^2$]. In this paper, we propose a self-tuning scheme for adapting operator probabilities in genetic algorithms. Our scheme was extensively tested on four function optimization problems and one combinational problem; and compared to simple genetic algorithms with constant probabilities and adaptive genetic algorithm proposed by Srinivas et al[$^3$]. Experimental results showed that our scheme was superior to the others. Our scheme compared with previous works has three advantages: less computational efforts, co-evolution without additional operations for evolution of probabilities, and no need of additional parameters.

  • PDF