• Title/Summary/Keyword: adaptive control law

Search Result 315, Processing Time 0.023 seconds

A model reference adaptive fuzzy control for MIMO Takagi-Sugeno fuzzy model (MIMO Takagi-Sugeno 퍼지 모델을 위한 모델참조 적응 퍼지 제어기의 설계)

  • Cho, Young-Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.130-135
    • /
    • 2007
  • In this paper, a direct model reference adaptive fuzzy control (MRAFC) scheme is developed for the plant model whose structure is represented by the MIMO Takagi-Sugeno fuzzy model. The MRAFC scheme is proposed to provide asymptotic tracking of a reference signal lot the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee that all signals in the closed-loop system are bounded. In addition, the plant state tracks the state of the reference model asymptotically with time tot any bounded reference input signal.

Design of Adaptive Fuzzy Controller to Inverted Pendulum Tracking (도립 진자의 궤적 제어를 위한 적응 제어기의 설계)

  • Min, Hyun-Ki;Ryu, Chang-Wan;Shim, Jae-Chul;Yim, Hwa-Yeoung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.519-521
    • /
    • 1999
  • An adaptive fuzzy controller is constructed from a set of fuzzy IF-THEN rules whose parameters are adjusted on-line according to some adaptation law for the purpose of controlling the plant to track a given trajectory. Adaptive fuzzy controller of this paper is designed based on the Lyapunov synthesis approach The adaptive fuzzy controller is designed through the following steps: first, construct an initial controller based on linguistic descriptions(in the form of fuzzy IF-THEN rules) about the unknown plant from human experts; then, develop an adaptation law to adjust the parameters of the fuzzy controller on-line, the adaptive fuzzy controllers are used to control the inverted pendulum to track a given trajectory.

  • PDF

A Development of Algorithm on Robust Adaptive Law in Adaptive mechanism showing Chaotic phenomenon (혼돈 현상을 보이는 적응기구에서의 강인한 적응법칙에 관한 알고리즘의 개발)

  • Jeon, Sang-Young;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.322-325
    • /
    • 1994
  • Mareel and Bitmead proved the presence of chaotic signal in random noise by applying dead beat control theory to adaptive mechanism. In this paper robust adaptive theory is proposed. With the property of chaotic signal that has order and law, the proposed theory can enhance the control Performance by applying the recursive algorithm that uses dynamic relation which have small correlation. The performance of proposed algorithm is demonstrated with the computer simulation of position control of electric motor. In this simulation, the adaptive low is adopted to control electric motor and the Presence of chaotic signal in feedback signal is proved by using several method such as time series, fourier spectrum phase portrait method.

  • PDF

Adaptive nonsingular sliding mode based guidance law with terminal angular constraint

  • He, Shaoming;Lin, Defu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.146-152
    • /
    • 2014
  • In this paper, a new adaptive nonsingular terminal sliding mode control theory based impact angle guidance law for intercepting maneuvering targets was documented. In the design procedure, a new adaptive law for target acceleration bound estimation was presented, which allowed the proposed guidance law to be used without the requirement of the information on the target maneuvering profiles. With the aid of Lyapunov stability criteria, the finite-time convergent characteristics of the line-of-sight angle and its derivative were proven in theory. Numerical simulations were also performed under various conditions to demonstrate the effectiveness of the proposed guidance law.

An Indirect Model Reference Adaptive Fuzzy Control for SISO Takagi-Sugeno Model

  • Cho, Young-Wan;Park, Chang-Woo;Lee, Ki-Chul;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.32-42
    • /
    • 2001
  • In this paper, a parameter estimator is developed for the plant model whose structure is represented by the Takagi-Sugeno model. The essential idea behind the on-line estimation is the comparison of the measured stated with the state of an estimation model whose structure is the same as that of the parameterized model. Based on the parameter estimation scheme, and indirect Model Reference Adaptive Fuzzy control(MRAFC) scheme is proposed to provide asymptotic tracking of a reference signal for the systems with uncertain for slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop systems. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal.

  • PDF

Nonlinear Adaptive Flight Control Using Neural Networks and Backstepping (신경회로망 및 Backstepping 기법을 이용한 비선형 적응 비행제어)

  • Lee, Taeyoung;Kim, Youdan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1070-1078
    • /
    • 2000
  • A nonlinear adaptive flight control system is proposed using a backstepping controller with neural network controller. The backstepping controller is used to stabilize all state variables simultaneously without the two-timescale assumption that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics which includes angle of attack, sideslip angle, and bank angle. It is assumed that the aerodynamic coefficients include uncertainty, and an adaptive controller based on neural networks is used to compensate for the effect of the aerodynamic modeling error. It is shown by the Lyapunov stability theorem that the tracking errors and the weights of neural networks exponentially converge to a compact set. Finally, nonlinear six-degree-of-freedom simulation results for an F-16 aircraft model are presented to demonstrate the effectiveness of the proposed control law.

  • PDF

Adaptive Backstepping Controller Design for a Permanent Magnet Synchronous Motor using Speed Observer (속도관측기를 활용한 영구자석동기전동기의 적응 백스테핑 제어기 설계)

  • 현근호;양해원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.347-353
    • /
    • 2003
  • A nonlinear speed controller for a surface mounted permanent magnet synchronous motor (PMSM) based on a newly developed adaptive backstepping approach is presented To compensate parameter uncertainties and load torque disturbance, a nonlinear adaptive backstepping control law and adaptive law are derived systematically through virtual control input and suitable Lyapunov function. Also, speed observer without using costly speed sensor is presented. Simulation results show that the proposed controller can observe the speed and track the reference speed signal generated by a reference model.

Adaptive fuzzy sliding mode controller design using learning rate control (학습 속도 재어 기능을 가진 적응 퍼지 슬라이딩 모드 제어기 설계)

  • Hwang, Eun-Ju;Lee, Hee-Jin;Kim, Eun-Tai;Park, Mig-Non
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.226-228
    • /
    • 2006
  • This paper is concerned with an Adaptive Fuzzy Sliding Mode Control(AFSMC) that the fuzzy systems are used to approximate the unknown functions of nonlinear system. In the adaptive fuzzy system, we adopt the adaptive law to approximate the dynamics of the nonlinear plant and to adjust the parameters of AFSMC. The stability of the suggested control system is proved via Lyapunov stability theorem, and convergence and robustness properties are demonstrated. The simulation results demonstrate that the performance is improved and the system also exhibits stability.

  • PDF

Adaptive Control of Nonlinear System Using Fuzzy and Compensating Controllers (퍼지와 보상 제어기를 이용한 비선형 시스템의 적응 제어)

  • Lee, Young-Woon;Lee, Young-Seog;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.210-212
    • /
    • 1995
  • Its is proposed that a stable adaptive control system composed of a fuzzy and a compensating controller, is designed to control nonlinear systems. In fuzzy and proposed compensating controller, parameters of membership functions characterizing the linguistic terms change according to some adaptive law. The adaptive law are based on the Lyapunov systhesis approach. the closed-loop system using the adaptive control structure proposed in this paper is globally stable in the sense that the Lyapunov function decreases as time goes. the following simulation shows the results.

  • PDF

An Analysis of Adaptive Fuzzy Sliding Mode Controller of Nonlinear System (적응 퍼지 슬라이딩 모드 제어기설계를 위한 새로운 해석)

  • Kong, Hyoung-Sic;Hwang, Eun-Ju;Park, Mignon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.161-163
    • /
    • 2005
  • This paper is concerned with an Adaptive Fuzzy Sliding Mode Control(AFSMC) that the fuzzy systems are used to approximate the unknown functions of nonlinear system. In the adaptive fuzzy system. we adopt the adaptive law to approximate the dynamics of the nonlinear plant and to adjust the parameters of AFSMC. The stability of the suggested control system is proved via Lyapunov stability theorem. and convergence and robustness properties are demonstrated. The simulation results demonstrate that the performance is improved and the system also exhibits stability.

  • PDF