Journal of the Korean Institute of Intelligent Systems
/
v.2
no.2
/
pp.42-60
/
1992
An adaptive fuzzy system can efficiently classify subimages into four categories according to image activity level for image data compression. The system estimates fuzzy rules by clustering input-output data generated from a given adaptive transform image coding process. The system encodes different images without modification and reduces side information when encoding multiple images. In the second part, a fuzzy system estimates optimal bit maps for the four subimage classes in noisy channels assuming a Gauss-Markov image model. The fuzzy systems respectively estimate the sampled subimage classification and the bit-allocation processes without a mathematical model of how outputs depend on inputs and without rules articulated by experts.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.3
/
pp.1238-1259
/
2019
Saving energy is a big challenge for Wireless Sensor Networks (WSNs), which becomes even more critical in large-scale WSNs. Most energy waste is communication related, such as collision, overhearing and idle listening, so the schedule-based access which can avoid these wastes is preferred for WSNs. On the other hand, clustering technique is considered as the most promising solution for topology management in WSNs. Hence, providing interference-free clustering is vital for WSNs, especially for large-scale WSNs. However, schedule management in cluster-based networks is never a trivial work, since it requires inter-cluster cooperation. In this paper, we propose a clustering method, called Interference-Free Clustering Protocol (IFCP), to partition a WSN into interference-free clusters, making timeslot management much easier to achieve. Moreover, we model the clustering problem as a multi-objective optimization issue and use non-dominated sorting genetic algorithm II to solve it. Our proposal is finally compared with two adaptive clustering methods, HEED-CSMA and HEED-BMA, demonstrating that it achieves the good performance in terms of delay, packet delivery ratio, and energy consumption.
Kim, Yo-Sup;Hong, Yeong-Pyo;Cho, Young-Il;Kim, Jin-Su;Eun, Jong-Won;Lee, Jong-Yong;Lee, Sang-Hun
Journal of the Korea Academia-Industrial cooperation Society
/
v.11
no.9
/
pp.3472-3480
/
2010
The Clustering technology of Energy efficiency wireless sensor network gets the energy efficiency by reducing the number of communication between sensor nodes and sink node. In this paper, First analyzed on the clustering technique of the distributed clustering protocol routing scheme LEACH (Low Energy Adaptive Clustering Hierarchy) and HEED (Hybrid, Energy-Efficient Distributed Clustering Approach), and based on this, new energy-efficient clustering technique is proposed for the cause the maximum delay of dead nodes and to increase the lifetime of the network. In the proposed method, the cluster head is elect the optimal efficiency node based on the residual energy information of each member node and located information between sink node and cluster node, and elected a node in the cluster head since the data transfer process from the data been sent to the sink node to form a network by sending the energy consumption of individual nodes evenly to increase the network's entire life is the purpose of this study. To verify the performance of the proposed method through simulation and compared with existing clustering techniques. As a result, compared to the existing method of the network life cycle is approximately 5-10% improvement could be confirmed.
Kim, Kee-Eung;Park, Tae-Suh;Park, Min-Kyu;Lee, Yong-Beom;Kim, Yeun-Bae;Kim, Sang-Ryong
한국HCI학회:학술대회논문집
/
2006.02a
/
pp.711-716
/
2006
Since the introduction of digital camera to the mass market, the number of digital photos owned by an individual is growing at an alarming rate. This phenomenon naturally leads to the issues of difficulties while searching and browsing in the personal digital photo archive. Traditional approach typically involves content-based image retrieval using computer vision algorithms. However, due to the performance limitations of these algorithms, at least on the casual digital photos taken by non-professional photographers, more recent approaches are centered on time-based clustering algorithms, analyzing the shot times of photos. These time-based clustering algorithms are based on the insight that when these photos are clustered according to the shot-time similarity, we have "event clusters" that will help the user browse through her photo archive. It is also reported that one of the remaining problems with the time-based approach is that people perceive events in different scales. In this paper, we present an adaptive time-based clustering algorithm that exploits the usage history of digital photos in order to infer the user's preference on the event granularity. Experiments show significant performance improvements in the clustering accuracy.
The purpose of this study is to test the applicability of neuro-fuzzy system for monthly dam inflow forecasts by using weather forecasting information. The neuro-fuzzy algorithm adopted in this study is the ANFIS(Adaptive neuro-fuzzy Inference System) in which neural network theory is combined with fuzzy theory. The ANFIS model can experience the difficulties in selection of a control rule by a space partition because the number of control value increases rapidly as the number of fuzzy variable increases. In an effort to overcome this drawback, this study used the subtractive clustering which is one of fuzzy clustering methods. Also, this study proposed a method for converting qualitative weather forecasting information to quantitative one. ANFIS for monthly dam inflow forecasts was tested in cases of with or without weather forecasting information. It can be seen that the model performances obtained from the use of past observed data and future weather forecasting information are much better than those from past observed data only.
We develop a low complexity cooperative diversity protocol for low energy adaptive clustering hierarchy (LEACH) based wireless sensor networks. A cross layer approach is used to obtain spatial diversity in the physical layer. In this paper, a simple modification in clustering algorithm of the LEACH protocol is proposed to exploit virtual multiple-input multiple-output (MIMO) based user cooperation. In lieu of selecting a single cluster-head at network layer, we proposed M cluster-heads in each cluster to obtain a diversity order of M in long distance communication. Due to the broadcast nature of wireless transmission, cluster-heads are able to receive data from sensor nodes at the same time. This fact ensures the synchronization required to implement a virtual MIMO based space time block code (STBC) in cluster-head to sink node transmission. An analytical method to evaluate the energy consumption based on BER curve is presented. Analysis and simulation results show that proposed cooperative LEACH protocol can save a huge amount of energy over LEACH protocol with same data rate, bit error rate, delay and bandwidth requirements. Moreover, this proposal can achieve higher order diversity with improved spectral efficiency compared to other virtual MIMO based protocols.
Chun Woo-Je;Joo Yong-Jin;Moon Kyung-Ky;Lee Yong-Ik;Park Soo-Hong
Spatial Information Research
/
v.13
no.4
s.35
/
pp.355-364
/
2005
Vector data sets (e.g. maps) are currently major sources of displaying, querying, and identifying locations of spatial features in a variety of applications. Especially in mobile environment, the needs for using spatial data is increasing, and the relative large size of vector maps need to be smaller. Recently, there have been several studies about vector map compression. There was clustering-based compression method with novel encoding/decoding scheme. However, precedent studies did not consider that spatial data have to be updated periodically. This paper explores the problem of existing clustering-based compression method. We propose an adaptive approximation method that is capable of handling data updates as well as reducing error levels. Experimental evaluation showed that when an updated event occurred the proposed adaptive approximation method showed enhanced positional accuracy compared with simple cluster based compression method.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.12a
/
pp.279-282
/
2001
This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) Model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved MEC can classify the image into two classes with unsupervised teaming rule. The proposed method is applied to some experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.10a
/
pp.153-157
/
2004
본 논문은 패턴인식을 위해 사용할 수 있는 감독학습을 이용한 supervised IAFC neural network 1과 supervised IAFC neural network 2를 제안하였다 Supervised IAFC neural network 1과 supervised IAFC neural network 2는 LVQ(Learning Vector Quantization)를 퍼지화한 새로운 퍼지 학습법칙을 사용하고 있다. 이 새로운 퍼지 학습 법칙은 기존의 학습률 대신에 퍼지화된 학습률을 사용하고 있는데, 이 퍼지화된 학습률은 조건 확률을 퍼지화 한 것에 근간을 두고 있다. Supervised IAFC neural network 1과 supervised IAFC neural network 2의 성능과 오류역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, 실험결과 supervised IAFC neural network 2 의 성능이 오류역전파 신경회로망의 성능보다 우수함이 입증되었다.
The Transactions of the Korean Institute of Electrical Engineers P
/
v.51
no.2
/
pp.99-104
/
2002
In this paper, we construct a hybrid intelligent controller based on a fusion scheme of GA(Genetic Algorithm) and FCM(Fuzzy C-Means) clustering-based ANFIS(Adaptive Neuro-Fuzzy Inference System). In the structure identification, a set of fuzzy rules are generated for a given criterion by FCM clustering algorithm. In the parameter identification, premise parameters are optimally searched by adaptive GA. On the other hand, consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. Finally, we applied the proposed method to the truck backer-upper control and obtained a better performance than previous works.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.