• Title/Summary/Keyword: adaptive clustering

Search Result 257, Processing Time 0.025 seconds

Adaptive Transform Image Coding by Fuzzy Subimage Classification

  • Kong, Seong-Gon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.42-60
    • /
    • 1992
  • An adaptive fuzzy system can efficiently classify subimages into four categories according to image activity level for image data compression. The system estimates fuzzy rules by clustering input-output data generated from a given adaptive transform image coding process. The system encodes different images without modification and reduces side information when encoding multiple images. In the second part, a fuzzy system estimates optimal bit maps for the four subimage classes in noisy channels assuming a Gauss-Markov image model. The fuzzy systems respectively estimate the sampled subimage classification and the bit-allocation processes without a mathematical model of how outputs depend on inputs and without rules articulated by experts.

  • PDF

Interference-free Clustering Protocol for Large-Scale and Dense Wireless Sensor Networks

  • Chen, Zhihong;Lin, Hai;Wang, Lusheng;Zhao, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1238-1259
    • /
    • 2019
  • Saving energy is a big challenge for Wireless Sensor Networks (WSNs), which becomes even more critical in large-scale WSNs. Most energy waste is communication related, such as collision, overhearing and idle listening, so the schedule-based access which can avoid these wastes is preferred for WSNs. On the other hand, clustering technique is considered as the most promising solution for topology management in WSNs. Hence, providing interference-free clustering is vital for WSNs, especially for large-scale WSNs. However, schedule management in cluster-based networks is never a trivial work, since it requires inter-cluster cooperation. In this paper, we propose a clustering method, called Interference-Free Clustering Protocol (IFCP), to partition a WSN into interference-free clusters, making timeslot management much easier to achieve. Moreover, we model the clustering problem as a multi-objective optimization issue and use non-dominated sorting genetic algorithm II to solve it. Our proposal is finally compared with two adaptive clustering methods, HEED-CSMA and HEED-BMA, demonstrating that it achieves the good performance in terms of delay, packet delivery ratio, and energy consumption.

A Study on clustering method for Banlancing Energy Consumption in Hierarchical Sensor Network (계층적 센서 네트워크에서 균등한 에너지 소비를 위한 클러스터링 기법에 관한 연구)

  • Kim, Yo-Sup;Hong, Yeong-Pyo;Cho, Young-Il;Kim, Jin-Su;Eun, Jong-Won;Lee, Jong-Yong;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3472-3480
    • /
    • 2010
  • The Clustering technology of Energy efficiency wireless sensor network gets the energy efficiency by reducing the number of communication between sensor nodes and sink node. In this paper, First analyzed on the clustering technique of the distributed clustering protocol routing scheme LEACH (Low Energy Adaptive Clustering Hierarchy) and HEED (Hybrid, Energy-Efficient Distributed Clustering Approach), and based on this, new energy-efficient clustering technique is proposed for the cause the maximum delay of dead nodes and to increase the lifetime of the network. In the proposed method, the cluster head is elect the optimal efficiency node based on the residual energy information of each member node and located information between sink node and cluster node, and elected a node in the cluster head since the data transfer process from the data been sent to the sink node to form a network by sending the energy consumption of individual nodes evenly to increase the network's entire life is the purpose of this study. To verify the performance of the proposed method through simulation and compared with existing clustering techniques. As a result, compared to the existing method of the network life cycle is approximately 5-10% improvement could be confirmed.

Adaptive Event Clustering for Personalized Photo Browsing (사진 사용 이력을 이용한 이벤트 클러스터링 알고리즘)

  • Kim, Kee-Eung;Park, Tae-Suh;Park, Min-Kyu;Lee, Yong-Beom;Kim, Yeun-Bae;Kim, Sang-Ryong
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.711-716
    • /
    • 2006
  • Since the introduction of digital camera to the mass market, the number of digital photos owned by an individual is growing at an alarming rate. This phenomenon naturally leads to the issues of difficulties while searching and browsing in the personal digital photo archive. Traditional approach typically involves content-based image retrieval using computer vision algorithms. However, due to the performance limitations of these algorithms, at least on the casual digital photos taken by non-professional photographers, more recent approaches are centered on time-based clustering algorithms, analyzing the shot times of photos. These time-based clustering algorithms are based on the insight that when these photos are clustered according to the shot-time similarity, we have "event clusters" that will help the user browse through her photo archive. It is also reported that one of the remaining problems with the time-based approach is that people perceive events in different scales. In this paper, we present an adaptive time-based clustering algorithm that exploits the usage history of digital photos in order to infer the user's preference on the event granularity. Experiments show significant performance improvements in the clustering accuracy.

  • PDF

Monthly Dam Inflow Forecasts by Using Weather Forecasting Information (기상예보정보를 활용한 월 댐유입량 예측)

  • Jeong, Dae-Myoung;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.449-460
    • /
    • 2004
  • The purpose of this study is to test the applicability of neuro-fuzzy system for monthly dam inflow forecasts by using weather forecasting information. The neuro-fuzzy algorithm adopted in this study is the ANFIS(Adaptive neuro-fuzzy Inference System) in which neural network theory is combined with fuzzy theory. The ANFIS model can experience the difficulties in selection of a control rule by a space partition because the number of control value increases rapidly as the number of fuzzy variable increases. In an effort to overcome this drawback, this study used the subtractive clustering which is one of fuzzy clustering methods. Also, this study proposed a method for converting qualitative weather forecasting information to quantitative one. ANFIS for monthly dam inflow forecasts was tested in cases of with or without weather forecasting information. It can be seen that the model performances obtained from the use of past observed data and future weather forecasting information are much better than those from past observed data only.

Energy Efficient Cooperative LEACH Protocol for Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.358-365
    • /
    • 2010
  • We develop a low complexity cooperative diversity protocol for low energy adaptive clustering hierarchy (LEACH) based wireless sensor networks. A cross layer approach is used to obtain spatial diversity in the physical layer. In this paper, a simple modification in clustering algorithm of the LEACH protocol is proposed to exploit virtual multiple-input multiple-output (MIMO) based user cooperation. In lieu of selecting a single cluster-head at network layer, we proposed M cluster-heads in each cluster to obtain a diversity order of M in long distance communication. Due to the broadcast nature of wireless transmission, cluster-heads are able to receive data from sensor nodes at the same time. This fact ensures the synchronization required to implement a virtual MIMO based space time block code (STBC) in cluster-head to sink node transmission. An analytical method to evaluate the energy consumption based on BER curve is presented. Analysis and simulation results show that proposed cooperative LEACH protocol can save a huge amount of energy over LEACH protocol with same data rate, bit error rate, delay and bandwidth requirements. Moreover, this proposal can achieve higher order diversity with improved spectral efficiency compared to other virtual MIMO based protocols.

A GIS Vector Data Compression Method Considering Dynamic Updates

  • Chun Woo-Je;Joo Yong-Jin;Moon Kyung-Ky;Lee Yong-Ik;Park Soo-Hong
    • Spatial Information Research
    • /
    • v.13 no.4 s.35
    • /
    • pp.355-364
    • /
    • 2005
  • Vector data sets (e.g. maps) are currently major sources of displaying, querying, and identifying locations of spatial features in a variety of applications. Especially in mobile environment, the needs for using spatial data is increasing, and the relative large size of vector maps need to be smaller. Recently, there have been several studies about vector map compression. There was clustering-based compression method with novel encoding/decoding scheme. However, precedent studies did not consider that spatial data have to be updated periodically. This paper explores the problem of existing clustering-based compression method. We propose an adaptive approximation method that is capable of handling data updates as well as reducing error levels. Experimental evaluation showed that when an updated event occurred the proposed adaptive approximation method showed enhanced positional accuracy compared with simple cluster based compression method.

  • PDF

An Image Contrast Enhancement Technique Using Integrated Adaptive Fuzzy Clustering Model (IAFC 모델을 이용한 영상 대비 향상 기법)

  • 이금분;김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.279-282
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) Model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved MEC can classify the image into two classes with unsupervised teaming rule. The proposed method is applied to some experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

IAFC(Integrated Adaptive Fuzzy Clustering)Model Using Supervised Learning Rule for Pattern Recognition (패턴 인식을 위한 감독학습을 사용한 IAFC( Integrated Adaptive Fuzzy Clustering)모델)

  • 김용수;김남진;이재연;지수영;조영조;이세열
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.153-157
    • /
    • 2004
  • 본 논문은 패턴인식을 위해 사용할 수 있는 감독학습을 이용한 supervised IAFC neural network 1과 supervised IAFC neural network 2를 제안하였다 Supervised IAFC neural network 1과 supervised IAFC neural network 2는 LVQ(Learning Vector Quantization)를 퍼지화한 새로운 퍼지 학습법칙을 사용하고 있다. 이 새로운 퍼지 학습 법칙은 기존의 학습률 대신에 퍼지화된 학습률을 사용하고 있는데, 이 퍼지화된 학습률은 조건 확률을 퍼지화 한 것에 근간을 두고 있다. Supervised IAFC neural network 1과 supervised IAFC neural network 2의 성능과 오류역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, 실험결과 supervised IAFC neural network 2 의 성능이 오류역전파 신경회로망의 성능보다 우수함이 입증되었다.

  • PDF

A Design of GA-based Fuzzy Controller and Truck Backer-Upper Control (GA 기반 퍼지 제어기의 설계 및 트럭 후진제어)

  • Kwak, Keun-Chang;Kim, Ju-Sik;Jeong, Su-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.99-104
    • /
    • 2002
  • In this paper, we construct a hybrid intelligent controller based on a fusion scheme of GA(Genetic Algorithm) and FCM(Fuzzy C-Means) clustering-based ANFIS(Adaptive Neuro-Fuzzy Inference System). In the structure identification, a set of fuzzy rules are generated for a given criterion by FCM clustering algorithm. In the parameter identification, premise parameters are optimally searched by adaptive GA. On the other hand, consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. Finally, we applied the proposed method to the truck backer-upper control and obtained a better performance than previous works.