• Title/Summary/Keyword: adaptive channel normalization

Search Result 5, Processing Time 0.019 seconds

Online Blind Channel Normalization Using BPF-Based Modulation Frequency Filtering

  • Lee, Yun-Kyung;Jung, Ho-Young;Park, Jeon Gue
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1190-1196
    • /
    • 2016
  • We propose a new bandpass filter (BPF)-based online channel normalization method to dynamically suppress channel distortion when the speech and channel noise components are unknown. In this method, an adaptive modulation frequency filter is used to perform channel normalization, whereas conventional modulation filtering methods apply the same filter form to each utterance. In this paper, we only normalize the two mel frequency cepstral coefficients (C0 and C1) with large dynamic ranges; the computational complexity is thus decreased, and channel normalization accuracy is improved. Additionally, to update the filter weights dynamically, we normalize the learning rates using the dimensional power of each frame. Our speech recognition experiments using the proposed BPF-based blind channel normalization method show that this approach effectively removes channel distortion and results in only a minor decline in accuracy when online channel normalization processing is used instead of batch processing

Adaptive Channel Normalization Based on Infomax Algorithm for Robust Speech Recognition

  • Jung, Ho-Young
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.300-304
    • /
    • 2007
  • This paper proposes a new data-driven method for high-pass approaches, which suppresses slow-varying noise components. Conventional high-pass approaches are based on the idea of decorrelating the feature vector sequence, and are trying for adaptability to various conditions. The proposed method is based on temporal local decorrelation using the information-maximization theory for each utterance. This is performed on an utterance-by-utterance basis, which provides an adaptive channel normalization filter for each condition. The performance of the proposed method is evaluated by isolated-word recognition experiments with channel distortion. Experimental results show that the proposed method yields outstanding improvement for channel-distorted speech recognition.

  • PDF

On-Line Blind Channel Normalization for Noise-Robust Speech Recognition

  • Jung, Ho-Young
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.143-151
    • /
    • 2012
  • A new data-driven method for the design of a blind modulation frequency filter that suppresses the slow-varying noise components is proposed. The proposed method is based on the temporal local decorrelation of the feature vector sequence, and is done on an utterance-by-utterance basis. Although the conventional modulation frequency filtering approaches the same form regardless of the task and environment conditions, the proposed method can provide an adaptive modulation frequency filter that outperforms conventional methods for each utterance. In addition, the method ultimately performs channel normalization in a feature domain with applications to log-spectral parameters. The performance was evaluated by speaker-independent isolated-word recognition experiments under additive noise environments. The proposed method achieved outstanding improvement for speech recognition in environments with significant noise and was also effective in a range of feature representations.

  • PDF

Multi-channel normalized FxLMS algorithm for active noise control (능동 소음 제어를 위한 정규화된 다채널 FxLMS 알고리즘)

  • Chung, Ik Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.280-287
    • /
    • 2016
  • In this paper, we propose a normalization algorithm that can be applied to adaptive filters for multi-channel active noise control. The FxLMS (Filtered-x Least Mean Square) algorithm for the single-channel active noise control can be normalized in the same way as the NLMS (Normalized Least Mean Square) algorithm, whereas in case of the multi-channel active noise control, the single-channel normalization for the FxLMS algorithm cannot be extended to the normalization for the multi-channel FxLMS algorithm straightforwardly. First, we adopt a generalized normalization algorithm for the multi-channel FxLMS algorithm based on the principle of minimal disturbance and then, proposed a normalized algorithm considering only diagonal elements to avoid computation for matrix inversion. We carried out performance comparisons of the proposed algorithm with other algorithms without normalization. It is shown that the proposed algorithm presents better convergence characteristics under non-stationary environments.

Adaptive low-resolution palmprint image recognition based on channel attention mechanism and modified deep residual network

  • Xu, Xuebin;Meng, Kan;Xing, Xiaomin;Chen, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.757-770
    • /
    • 2022
  • Palmprint recognition has drawn increasingly attentions in the past decade due to its uniqueness and reliability. Traditional palmprint recognition methods usually use high-resolution images as the identification basis so that they can achieve relatively high precision. However, high-resolution images mean more computation cost in the recognition process, which usually cannot be guaranteed in mobile computing. Therefore, this paper proposes an improved low-resolution palmprint image recognition method based on residual networks. The main contributions include: 1) We introduce a channel attention mechanism to refactor the extracted feature maps, which can pay more attention to the informative feature maps and suppress the useless ones. 2) The ResStage group structure proposed by us divides the original residual block into three stages, and we stabilize the signal characteristics before each stage by means of BN normalization operation to enhance the feature channel. Comparison experiments are conducted on a public dataset provided by the Hong Kong Polytechnic University. Experimental results show that the proposed method achieve a rank-1 accuracy of 98.17% when tested on low-resolution images with the size of 12dpi, which outperforms all the compared methods obviously.