• Title/Summary/Keyword: adaptive analysis

Search Result 2,230, Processing Time 0.034 seconds

A Goodness-Of-Fit Test for Adaptive Fourier Model in Time Series Data

  • Lee, Hoonja
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.955-969
    • /
    • 2003
  • The classical Fourier analysis, which is the typical frequency domain approach, is used to detect periodic trends that are of the sinusoidal shape in time series data. In this article, using a sequence of periodic step functions, describes an adaptive Fourier series where the patterns may take general periodic shapes that include sinusoidal as a special case. The results, which extend both Fourier analysis and Walsh-Fourier analysis, are applies to investigate the shape of the periodic component. Through the real data, compare the goodness-of-fit of the model using two methods, the adaptive Fourier method which is proposed method in this paper and classical Fourier method.

Adaptive Crack Propagation Analysis with the Element-free Galerkin Method (Element-free Galerkin 방법을 이용한 적응적 균열진전해석)

  • 최창근;이계희;정흥진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.485-500
    • /
    • 2000
  • In this paper the adaptive crack propagation analysis based on the estimated local and global error in the element-free Galerkin (EFG) method is presented. It is possible to keep consistency and accuracy of analysis in each propagation step by adaptive analysis. The adaptivity analysis in crack propagation is achieved by adding and removing the node along the background integration cell that are refined or recovered as estimated error. These errors are obtained by calculating the difference between the values of the projected stresses and original EFG stresses. To evaluate the performance of proposed adaptive procedure, the convergence behavior is investigated lot several examples. The results of these examples show the efficiency of proposed scheme in crack propagation analysis.

  • PDF

A stochastic adaptive pushover procedure for seismic assessment of buildings

  • Jafari, Mohammad;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.477-492
    • /
    • 2018
  • Recently, the adaptive nonlinear static analysis method has been widely used in the field of performance based earthquake engineering. However, the proposed methods are almost deterministic and cannot directly consider the seismic record uncertainties. In the current study an innovative Stochastic Adaptive Pushover Analysis, called "SAPA", based on equivalent hysteresis system responses is developed to consider the earthquake record to record uncertainties. The methodology offers a direct stochastic analysis which estimates the seismic demands of the structure in a probabilistic manner. In this procedure by using a stochastic linearization technique in each step, the equivalent hysteresis system is analyzed and the probabilistic characteristics of the result are obtained by which the lateral force pattern is extracted and the actual structure is pushed. To compare the results, three different types of analysis have been considered; conventional pushover methods, incremental dynamic analysis, IDA, and the SAPA method. The result shows an admirable accuracy in predicting the structure responses.

Scattering Analysis of Radar Target via Evolutionary Adaptive Wavelet Transform (진화적 적응 웨이브릿 변환에 의한 레이다 표적의 산란 해석)

  • Choi, In-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.148-153
    • /
    • 2007
  • In this paper, the evolutionary adaptive wavelet transform(EAWT) is applied to the scattering analysis of radar target. EAWT algorithm uses evolutionary programming for the time-frequency parameter extraction instead of FFT and the bisection search method used in the conventional adaptive wavelet transform(AWT). Therefore, the EAWT has a better performance than the conventional AWT. In the simulation using wire target(Airbus-like), the comparisons with the conventional AWT are presented to show the superiority of the EAWT algorithm in the analysis of scattering phenomenology. The EAWT can be effectively applied to the radar target recognition.

Intelligent Control of Robot Manipulator Using DSPs(TMS320C80) (DSPs(TMS320C80)을 이용한 로봇 매니퓰레이터의 지능제어)

  • 이우송;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.219-226
    • /
    • 2003
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory fir the adaptive control of linear systems, there exists relatively little general theory fir the adaptive control of nonlinear systems. Adaptive control technique is essential fir providing a stable and robust performance fir application of robot control. The proposed neuro control algorithm is one of teaming a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique f3r real-time control of robot system using DSPs.

  • PDF

Robust Control of Robot Manipulator Based-on DSPs(TMS320C50) (DSPs(TMS320C50)을 이용한 로봇 매니퓰레이터의 견실제어)

  • 이우송;김종수;김홍래;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.193-200
    • /
    • 2004
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real-time control of robot system using DSPs.

  • PDF

Dynamically Adaptive Finite Element Mesh Generation Schemes

  • Yoon, Chong-Yul;Park, Joon-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.659-665
    • /
    • 2010
  • The finite element method(FEM) is proven to be an effective approximate method of structural analysis if proper element types and meshes are chosen, and recently, the method is often applied to solve complex dynamic and nonlinear problems. A properly chosen element type and mesh yields reliable results for dynamic finite element structural analysis. However, dynamic behavior of a structure may include unpredictably large strains in some parts of the structure, and using the initial mesh throughout the duration of a dynamic analysis may include some elements to go through strains beyond the elements' reliable limits. Thus, the finite element mesh for a dynamic analysis must be dynamically adaptive, and considering the rapid process of analysis in real time, the dynamically adaptive finite element mesh generating schemes must be computationally efficient. In this paper, a computationally efficient dynamically adaptive finite element mesh generation scheme for dynamic analyses of structures is described. The concept of representative strain value is used for error estimates and the refinements of meshes use combinations of the h-method(node movement) and the r-method(element division). The shape coefficient for element mesh is used to correct overly distorted elements. The validity of the scheme is shown through a cantilever beam example under a concentrated load with varying values. The example shows reasonable accuracy and efficient computing time. Furthermore, the study shows the potential for the scheme's effective use in complex structural dynamic problems such as those under seismic or erratic wind loads.

Comparison of error estimation methods and adaptivity for plane stress/strain problems

  • Ozakca, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.579-608
    • /
    • 2003
  • This paper deals with adaptive finite element analysis of linearly elastic structures using different error estimators based on flux projection (or best guess stress values) and residual methods. Presentations are given on a typical h-type adaptive analysis, a mesh refinement scheme and the coupling of adaptive finite element analysis with automatic mesh generation. Details about different error estimators are provided and their performance, reliability and convergence are studied using six node quadratic triangular elements. Several examples are presented to demonstrate the reliability of different error estimators.

An Analysis of the Characteristics of Teachers' Adaptive Practices in Science Classes (과학 수업에서 교사의 적응적 실행의 특징 분석)

  • Heekyong Kim;Bongwoo Lee
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.4
    • /
    • pp.403-414
    • /
    • 2023
  • In this study, we examined the adaptive practices of science teachers in their classrooms and their perspectives on the distinguishing features of these practices within science subjects. Our analysis comprised 339 cases from 128 middle and high school science teachers nationwide, and 199 cases on the characteristics of adaptive practices in science disciplines. The primary findings were as follows: First, the most significant characteristic of adaptive practice in science disciplines pertained to experimental procedures. Within the 'suggestion of additional materials/activities' category, the most frequently cited adaptive practice, teachers incorporated demonstrations to either facilitate student comprehension or enhance motivation. Additionally, 'experimental equipment manipulation or presentation of inquiry skills' emerged as the second most common adaptive practice related to experiments. Notably, over 50% of teacher responses regarding the characteristics of adaptive practices in science pertained to experiment guidance. Second, many adaptive practices involving difficulties experienced by students in learning situations were presented, particularly in areas such as numeracy and literacy. Many cases were related to the basic ability of mathematics used as a tool in science learning and understanding scientific terms in Chinese characters. Third, beyond 'experiment guidance', the characteristic adaptive practices of science subjects were related to 'connections between scientific theory and the real world', 'misconception guidance in science', 'cultivation of scientific thinking', and 'convergence approaches'. Fourth, the cases of adaptive practice presented by the science teachers differed by school level and major; therefore, it is necessary to consider school level or major in future research related to adaptive practice. Fifth, most of the adaptive action items with a small number of cases were adaptive actions executed from a macroscopic perspective, so it is necessary to pay attention to related professionalism. Finally, based on the results of this study, the implications for science education were discussed.

A Comparative Study on Eigen-Wear Analysis and Numerical Analysis using Algorithm for Adaptive Meshing (마모해석을 위한 고유치해석과 Adaptive Meshing 알고리듬을 이용한 수치해석 비교)

  • Jang, Ilkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.262-266
    • /
    • 2020
  • Herein, we present a numerical investigation of wear analysis of sliding systems with a constant speed subjected to Archard's wear law. For this investigation, we compared two methods: eigen-wear analysis and adaptive meshing technique. The eigen-wear analysis is advantageous to predict the evolution of contact pressure due to wear using the initial contact pressure and contact stiffness. The adaptive meshing technique in finite element analysis is employed to obtain transient wear behavior, which needs significant computational resources. From the eigen-wear analysis, we can determine the appropriate element size required for finite element analysis and the time increment required for wear evolution by a dimensionless variable above a certain value. Since the prediction of wear depends on the maximum contact pressure, the finite element model should have a reasonable representation of the maximum contact pressure. The maximum contact pressure and wear amount according to this dimensionless variable shows that the number of fine meshes in the contact area contributes more to the accuracy of the wear analysis, and the time increment is less sensitive when the number of contact nodes is significantly larger. The results derived from a two-dimensional wear model can be applied to a three-dimensional wear model.