• Title/Summary/Keyword: adaptive PI control

Search Result 140, Processing Time 0.03 seconds

지능형 AC서보 제어드라이버의 개발

  • Kim, Dong-Wan;Hwang, Gi-Hyun;Nam, Jing-Rak;Shin, Dong-Ryul;Park, Jee-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2158-2160
    • /
    • 2002
  • In this paper, we designed the adaptive fuzzy controller(AFLC) using neural network and tabu search. We tuned the weights of neural network changing adaptively input/output gain of fuzzy logic controller and the gain of fuzzy logic controller using tabu search. To evaluate the proposed method's effectiveness, we apply the proposed AFLC to the speed control of an actual AC servomotor system. The experimental results show that AFLC has the better control performance than PI controller in terms of settling time, rising time and overshoot.

  • PDF

Control of Nonminimum Phase Systems with Neural Networks and Genetic Algorithm

  • Park, Lae-Jeong;Park, Sangbong;Bien, Zeugnam;Park, Cheol-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.35-49
    • /
    • 1994
  • It is well known that, for nominimum phase systems, a conventional linear controller of PID type or an adaptive controller of this structure shows limitation in achieving a satisfactory performance under tight specifications. In this paper, we combine a neuro-controller with a PI-controller with off-line learning capability provided by the Genetic Algorithm to propose a novel neuro-controller to control nonminimum phase systems effectively. The simulation results show that our proposed model is more efficient with faster rising time and less undershoot effect when the performances of the proposed controller and a conventional form are compared.

  • PDF

A Novel MRAC Scheme for Electrical Servo Drives (서보전동기의 기준 모델 적응제어)

  • Park, Min-Ho;Chy, Ick;Yoon, Tae-Woong;Kim, Kwang-Bae
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.888-895
    • /
    • 1989
  • A novel model reference adaptive control (MRAC) scheme for electrical servo drives is proposed, in which the control input is synthesized without any parameter identification mechanism and a PI controller is inserted ahead of the plant to reduce the steady state chattering. The proposed scheme is shown to be asymptotically stable in the case where the load torque disturbance satisfies a certan condition. An application to a permanent magnet synchronous motor drive shows that the output error between the plant and the reference model tends to zero and the chattering is greatly reduced.

  • PDF

Fuzzy Control of Induction Motor Drive with Considering Parameter Variation (파라미터 변동을 고려한 유도전동기의 퍼지제어)

  • Lee, Young-Sil;Lee, Jung-Chul;Lee, Hong-Gyun;Jung, Tack-Gi;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1128-1131
    • /
    • 2003
  • This paper proposes a speed control system based on a fuzzy logic approach, integrated with a simple and effective adaptive algorithms. And this paper attempts to provide a thorough comparative insight into the behavior of induction motor drive with PI, direct and improved fuzzy speed controller. A indirect vector controlled induction motor is simulated under varying operating condition. The validity of the comparative results is confirmed by simulation results for induction motor drive system.

  • PDF

Feed Rate Control for the Head-Feed Thresher (수급식탈곡기(穗給式脱穀機)의 공급율(供給率) 제어(制御)(II) -제어시스템 설계 및 시뮬레이션-)

  • Choi, Y.S.;Chung, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.110-122
    • /
    • 1990
  • This study was undertaken to develop the feed rate control system for the head feed thresher by making use of the microprocessor and to evaluate the response of the system to a various threshing conditions. The control unit was composed of one-board microcomputer. The speed of the wet-paddy feeding chain was controlled by dc moter with PI controller. It was used the adaptive control method to maintain the constant feed rate regardless of the fed rice varieties. The sliding type potentiometer was used as the feed rate sensor, which was attached on the sheaf-holding apparatus. The mathematical models of the system components were derived and computer simulation was developed for investigating the parameters affecting on control performance and for estimating the response of the system. A one-board microcomputer-based feed rate control system developed in this study was properly functioned and assessed as adequate for the feed rate control system of the head feed thresher. Based on the simulation for the bundle feed, it was anticipated that the lower setting value of the cylinder speed(RL) is to be set higher than the limiting operational speed. In addition, the higher setting value of the cylinder speed(RH) is to be set lower than the limiting cylinder speed for threshing. The computer simulation for the continuous spread feed showed that the lower the setting value of straw layer thickness(LL) was set, the shorter the correction time. However, if too low LL may be established, the feed rate could not reach to its desired rate.

  • PDF

Experimental Data based-Parameter Estimation and Control for Container Crane (실험적 데이터 기반의 컨테이너 크레인 파라미터 추정 및 제어)

  • Lee, Yun-Hyung;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.379-385
    • /
    • 2008
  • In this paper, we presents a scheme for the parameter estimation and optimal control scheme for apparatus of container crane system. For parameter estimation, first, we construct the open loop of the container crane system and estimate its parameters based on input-output data, a real-coded genetic algorithm(RCGA) and the model adjustment technique. The RCGA plays an important role in parameter estimation as an adaptive mechanism. For controller design, state feedback gain matrix is searched by another RCGA and the estimated model. The performance of the proposed methods are demonstrated through a set of simulation and experiments of the experimental apparatus.

High Performance Speed and Current Control of SynRM Drive with ALM-FNN and FLC Controller (ALM-FNN 및 FLC 제어기에 의한 SynRM 드라이브의 고성능 속도와 전류제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.249-256
    • /
    • 2009
  • The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation, nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. The paper proposes high performance speed and current control of synchronous reluctance motor(SynRM) drive using adaptive learning mechanism-fuzzy neural network (ALM-FNN) and fuzzy logic control (FLC) controller. The proposed controller is developed to ensure accurate speed and current control of SynRM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN, FLC and ANN controller.

Efficiency Optimization Control of IPMSM Drive using SPI Controller (SPI 제어기를 이용한 IPMSM 드라이브의 효율최적화 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.15-25
    • /
    • 2011
  • This proposes an online loss minimization algorithm for series PI(SPI) based interior permanent magnet synchronous motor(IPMSM) drive to yield high efficiency and high dynamic performance over wide speed range. The loss minimization algorithm is developed based on the motor model. In order to minimize the controllable electrical losses of the motor and thereby maximize the operating efficiency, the d-axis armature current is controlled optimally according to the operating speed and load conditions. For vector control purpose, a SPI is used as a speed controller which enables the utilization of the reluctance torque to achieve high dynamic performance as well as to operate the motor over a wide speed range. Also, this paper proposes current control of model reference adaptive fuzzy controller(MFC), and estimation of speed using artificial neural network(ANN) controller. The proposed efficiency optimization control, SPI, MFC, ANN in this paper is applied to IPMSM drive system, the validity of this paper is proved by analyzing response characteristics in variety operating conditions.

High Performance Speed and Current Control of SynRM Drive with ALM-FNN and FLC Controller (ALM-FNN 및 FLC 제어기에 의한 SynRM 드라이브의 고성능 속도와 전류제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.416-419
    • /
    • 2009
  • The widely used control theory based design of PI family controllers fails to perform satisfactorily under-parameter variation, nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of loaming through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. The paper proposes high performance speed and current control of synchronous reluctance motor(SynRM) drive using adaptive loaming mechanism-fuzzy neural network (ALM-FNN) and fuzzy logic control(FLC) controller. The proposed controller is developed to ensure accurate speed and current control of SynRM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN and ANN controller.

  • PDF

Speed Estimation and Control of IPMSM Drive using NFC and ANN (NFC와 ANN을 이용한 IPMSM 드라이브의 속도 추정 및 제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.282-289
    • /
    • 2005
  • This paper proposes a fuzzy neural network controller based on the vector control for interior permanent magnet synchronous motor(IPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability This paper does not oかy presents speed control of IPMSM using neuro-fuzzy control(NFC) but also speed estimation using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. Thus, it is presented the theoretical analysis as well as the analysis results to verify the effectiveness of the proposed method in this paper.