For future autonomous cars, it is necessary to recognize various surrounding environments such as lanes, traffic lights, and vehicles. This paper presents a method of speed sign recognition from a single image in automatic driving assistance systems. The detection step with the proposed method emphasizes the color attributes in modified YUV color space because speed sign area is affected by color. The proposed method is further improved by extracting the digits from the highlighted circle region. A sequential cascade AdaBoost classifier is then used in the recognition step for real-time processing. Experimental results show the performance of the proposed algorithm is superior to that of conventional algorithms for various speed signs and real-world conditions.
Kim Do Hyoung;An Kwang Ho;Chung Myung Jin;Jung Sung Uk
Journal of Institute of Control, Robotics and Systems
/
v.12
no.2
/
pp.130-137
/
2006
In this paper, we propose a method of selecting new types of rectangle features that are suitable for facial expression recognition. The basic concept in this paper is similar to Viola's approach, which is used for face detection. Instead of previous Haar-like features we choose rectangle features for facial expression recognition among all possible rectangle types in a 3${\times}$3 matrix form using the AdaBoost algorithm. The facial expression recognition system constituted with the proposed rectangle features is also compared to that with previous rectangle features with regard to its capacity. The simulation and experimental results show that the proposed approach has better performance in facial expression recognition.
IEMEK Journal of Embedded Systems and Applications
/
v.8
no.3
/
pp.137-143
/
2013
This paper describes an implementation of face detection technology for a real-time application on the Android platform. Java class of Face-Detection for detection of human face is provided by the Android API. However, this function is not suitable to apply for the real-time applications due to inadequate detection speed and accuracy. In this paper, the AdaBoost based classification method which utilizes Local Binary Pattern (LBP) histogram is employed for face detection. The face detection module has been developed by C/C++ language for high-speed image processing, and this module is included to the Android platform using the Java Native Interface (JNI). The experiments were carried out in the Java-based environment and JNI-based environment. The experimental results have shown that the performance of JNI-based is faster than Java-based method and our system is well enough to apply for real-time applications.
Journal of the Korea Society of Computer and Information
/
v.15
no.2
/
pp.47-53
/
2010
This paper proposed Residual Image detection and Color Info using the face detection technique. The proposed technique was fast processing speed and high rate of face detection on the video. In addition, this technique is to detection error rate reduced through the calibration tasks for tilted face image. The first process is to extract target image from the transmitted video images. Next, extracted image processed by window rotated algorithm for detection of tilted face image. Feature extraction for face detection was used for AdaBoost algorithm.
Face recognition technologies using PCA(principal component analysis) recognize faces by deciding representative features of faces in the model image, extracting feature vectors from faces in a image and measuring the distance between them and face representation. Given frequent recognition problems associated with the use of point-to-point distance approach, this study adopted the K-nearest neighbor technique(class-to-class) in which a group of face models of the same class is used as recognition unit for the images inputted on a continual input image. This paper proposes a new PCA recognition in which database of faces.
The Transactions of The Korean Institute of Electrical Engineers
/
v.57
no.12
/
pp.2281-2284
/
2008
The purpose of this paper is to develope the drowsiness-drive perception system which judges drowsiness driving based on drivers' eye region using single vision system. To do this, first, we use the Haar-like feature and AdaBoost learning algorithm for detecting the features of the face region. And we measure the eye blinking frequency and eye closure duration from these feature data. And then, we propose the drowsiness-drive detection algorithm using the eye blinking frequency and eye closure duration. Finally, we have shown the effectiveness and feasibility of the proposed method through some experiments.
Kim, Donggi;Choi, Hongchul;Choi, Jaehoon;Yoo, Seong Joon;Han, Dongil
IEIE Transactions on Smart Processing and Computing
/
v.4
no.4
/
pp.265-271
/
2015
This study proposes an algorithm for recognizing apple trees in images and detecting apples to measure the number of apples on the trees. The proposed algorithm explores whether there are apple trees or not based on the number of image block-unit edges, and then it detects apple areas. In order to extract colors appropriate for apple areas, the CIE $L^*a^*b^*$ color space is used. In order to extract apple characteristics strong against illumination changes, modified census transform (MCT) is used. Then, using the AdaBoost learning algorithm, characteristics data on the apples are learned and generated. With the generated data, the detection of apple areas is made. The proposed algorithm has a higher detection rate than existing pixel-based image processing algorithms and minimizes false detection.
Communications for Statistical Applications and Methods
/
v.13
no.2
/
pp.449-466
/
2006
We propose to use variable selection methods based on penalized regression for pruning decision tree ensembles. Pruning methods based on LASSO and SCAD are compared with the cluster pruning method. Comparative studies are performed on some artificial datasets and real datasets. According to the results of comparative studies, the proposed methods based on penalized regression reduce the size of boosting ensembles without decreasing accuracy significantly and have better performance than the cluster pruning method. In terms of classification noise, the proposed pruning methods can mitigate the weakness of AdaBoost to some degree.
A video analysis system used to detect events in video streams generally has several processes, including object detection, object trajectories analysis, and recognition of the trajectories by comparison with an a priori trained model. However, these processes do not work well in a complex environment that has many occlusions, mirror effects, and/or shadow effects. We propose a new approach to a context-aware video surveillance system to detect predefined contexts in video streams. The proposed system consists of two modules: a feature extractor and a context recognizer. The feature extractor calculates the moving energy that represents the amount of moving objects in a video stream and the stationary energy that represents the amount of still objects in a video stream. We represent situations and events as motion changes and stationary energy in video streams. The context recognizer determines whether predefined contexts are included in video streams using the extracted moving and stationary energies from a feature extractor. To train each context model and recognize predefined contexts in video streams, we propose and use a new ensemble classifier based on the AdaBoost algorithm, DAdaBoost, which is one of the most famous ensemble classifier algorithms. Our proposed approach is expected to be a robust method in more complex environments that have a mirror effect and/or a shadow effect.
Sarker, Md. Mostafa Kamal;Yoon, Sook;Park, Dong Sun
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.10
/
pp.3490-3507
/
2014
License plate detection (LPD) is one of the most important aspects of an automatic license plate recognition system. Although there have been some successful license plate recognition (LPR) methods in past decades, it is still a challenging problem because of the diversity of plate formats and outdoor illumination conditions in image acquisition. Because the accurate detection of license plates under different conditions directly affects overall recognition system accuracy, different methods have been developed for LPD systems. In this paper, we propose a license plate detection method that is rapid and robust against variation, especially variations in illumination conditions. Taking the aspects of accuracy and speed into consideration, the proposed system consists of two stages. For each stage, Haar-like features are used to compute and select features from license plate images and a cascade classifier based on the concatenation of classifiers where each classifier is trained by an AdaBoost algorithm is used to classify parts of an image within a search window as either license plate or non-license plate. And it is followed by connected component analysis (CCA) for eliminating false positives. The two stages use different image preprocessing blocks: image preprocessing without adaptive thresholding for the first stage and image preprocessing with adaptive thresholding for the second stage. The method is faster and more accurate than most existing methods used in LPD. Experimental results demonstrate that the LPD rate is 98.38% and the average computational time is 54.64 ms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.