Journal of the Korean Institute of Intelligent Systems
/
v.20
no.5
/
pp.677-682
/
2010
This paper addresses a method of estimating roughly the human pose by comparing Haar-wavelet value which is learned in face detection technology using AdaBoost algorithm. We also presents its application to face recognition. The learned weak classifier is used to a Haar-wavelet robust to each pose's feature by comparing the coefficients during the process of face detection. The Mahalanobis distance is used to measure the matching degree in Haar-wavelet selection. When a facial image is detected using the selected Haar-wavelet, the pose is estimated. The proposed pose estimation can be used to improve face recognition speed. Experiments are conducted to evaluate the performance of the proposed method for pose estimation.
In this paper, a robust method is developed to locate the irises of both eyes. The method doesn't put any restrictions on the background. The method is based on the AdaBoost algorithm for face and eye candidate points detection. Candidate points are tuned such that two candidate points are exactly in the centers of the irises. Mean crossing function and convolution template are proposed to filter out candidate points and select the iris pair. The advantage of using this kind of hybrid method is that AdaBoost is robust to different illumination conditions and backgrounds. The tuning step improves the precision of iris localization while the convolution filter and mean crossing function reliably filter out candidate points and select the iris pair. The proposed structure is evaluated on three public databases, Bern, Yale and BioID. Extensive experimental results verified the robustness and accuracy of the proposed method. Using the Bern database, the performance of the proposed algorithm is also compared with some of the existing methods.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.9
no.4
/
pp.53-57
/
2009
In this paper to computerized patient management of patients applying for a facial recognition algorithm to extract Face Feature Points environment, the implementation of the U-Healthcare offers. First, mobile devices and the pictures and photos of the patient data used as input data, the algorithm AdaBoost Face Feature Points patterns extracted, then stored in an existing database, extracted from the patient's sample photos, matching patterns and makes Face Feature Points. The result is the same patient if the patient information database, in recognizing the disease, doctors, and medical fields to extract the relevant information on the screen to output devices, the patient will present the implementation of recognition system.
Window image is displayed through a monitor screen when we execute the application programs on the computer. This includes webpage, video player and a number of applications. The webpage delivers a variety of information by various types in comparison with other application. Unlike a natural image captured from a camera, the window image like a webpage includes diverse components such as text, logo, icon, subimage and so on. Each component delivers various types of information to users. However, the components with different characteristic need to be divided locally, because text and image are served by various type. In this paper, we divide window images into many sub blocks, and classify each divided region into background, text and subimage. The detected subimages can be applied into 2D-to-3D conversion, image retrieval, image browsing and so forth. There are many subimage classification methods. In this paper, we utilize AdaBoost for verifying that the machine learning-based algorithm can be efficient for subimage detection. In the experiment, we showed that the subimage detection ratio is 93.4 % and false alarm is 13 %.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.20
no.6
/
pp.175-182
/
2020
The non-contact eye tracking is a nonintrusive human-computer interface providing hands-free communications for people with severe disabilities. Recently. it is expected to do an important role in non-contact systems due to the recent coronavirus COVID-19, etc. This paper proposes a novel approach for an eye mouse using an eye tracking method based on a context-aware based AdaBoost multi-region classifier and ASSL algorithm. The conventional AdaBoost algorithm, however, cannot provide sufficiently reliable performance in face tracking for eye cursor pointing estimation, because it cannot take advantage of the spatial context relations among facial features. Therefore, we propose the eye-region context based AdaBoost multiple classifier for the efficient non-contact gaze tracking and mouse implementation. The proposed method detects, tracks, and aggregates various eye features to evaluate the gaze and adjusts active and semi-supervised learning based on the on-screen cursor. The proposed system has been successfully employed in eye location, and it can also be used to detect and track eye features. This system controls the computer cursor along the user's gaze and it was postprocessing by applying Gaussian modeling to prevent shaking during the real-time tracking using Kalman filter. In this system, target objects were randomly generated and the eye tracking performance was analyzed according to the Fits law in real time. It is expected that the utilization of non-contact interfaces.
Predicting ground settlement during the improvement of soft ground and the construction of a structure is an crucial factor. Numerous studies have been conducted, and many prediction equations have been proposed to estimate settlement. Settlement can be calculated using the compression index of clay. In this study, data on water content, void ratio, liquid limit, plastic limit, and compression index from the Busan New Port area were collected to construct a dataset. Correlation analysis was conducted among the collected data. Machine learning algorithms, including Random Forest, Neural Network, Linear Regression, Ada Boost, and Gradient Boosting, were applied using the Orange mining program to propose compression index prediction models. The models' results were evaluated by comparing RMSE and MAPE values, which indicate error rates, and R2 values, which signify the models' significance. As a result, water content showed the highest correlation, while the plastic limit showed a somewhat lower correlation than other characteristics. Among the compared models, the AdaBoost model demonstrated the best performance. As a result of comparing each model, the AdaBoost model had the lowest error rate and a large coefficient of determination.
본 논문에서는 햅틱 인터랙션 기반의 3차원 가상 얼굴 메이크업 시뮬레이션에서 메이크업 대상에 대한 정교한 페인팅을 적용하기 위한 자동화된 마스크 생성 방법을 개발한다. 본 연구에서는 메이크업 시뮬레이션 이전의 전처리 과정에서 마스크를 생성한다. 우선, 3차원 스캐너 장치로부터 사용자의 얼굴 텍스쳐 이미지와 3차원 기하 표면 모델을 획득한다. 획득된 얼굴 텍스쳐 이미지로부터 AdaBoost 알고리즘, Canny 경계선 검출 방법과 색 모델 변환 방법 등의 영상처리 알고리즘들을 적용하여 마스크 대상이 되는 주요 특정 영역(눈, 입술)들을 결정하고 얼굴 이미지로부터 2차원 마스크 영역을 결정한다. 이렇게 생성된 마스크 영역 이미지는 3차원 표면 기하 모델에 투영되어 최종적인 3차원 특징 영역의 마스크를 레이블링하는데 사용된다. 이러한 전처리 과정을 통하여 결정된 마스크는 햅틱 장치와 스테레오 디스플레이기반의 가상 인터페이스를 통해서 자연스러운 메이크업 시뮬레이션을 수행하는데 사용된다. 본 연구에서 개발한 방법은 사용자에게 전처리 과정에서의 어떠한 개입 없이 자동적으로 메이크업 대상이 되는 마스크 영역을 결정하여 정교하고 손쉬운 메이크업 페인팅 인터페이스를 제공한다.
Bae, Yun-Jin;Choi, Hyun-Jun;Seo, Young-Ho;Yoo, Ji Sang;Kim, Dong-Wook
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.07a
/
pp.230-232
/
2011
Viola와 Jine가 제안한 AdaBoost를 이용한 얼굴 검출 알고리즘은 빠른 얼굴 검출 속도와 뛰어난 성능으로 인해 최근 여러분야에서 널리 사용되고 있는 알고리즘 중 하나이다. 하지만 AdaBoost를 이용하여 얼굴을 검출함에 있어 오검출이 존재하며, 이를 줄이기 위해서는 많은 연산이 요구되며, 실시간 얼굴 검출이 필요한 분야에 적용되기에는 속도 면에서 단점으로 작용한다. 기존의 Adaboost의 얼굴 검출기는 그레이스케일 영상만을 사용하므로, 영상의 컬러 정보와 부가적인 정보를 사용하면 더 적은 연산으로 오검출률을 감소시킬 수 있고, 올바른 얼굴을 검출이 된 다음 추적 알고리즘에 적용을 시키면 동영상으로 입력되는 영상에 대해 실시간으로 얼굴을 검출 할 수 있게 된다. 본 논문에서는 얼굴 추적을 위한 사전단계로 컬러 정보와 부가적인 정보로 깊이 정보를 사용하여 얼굴을 효율적으로 검출하는 알고리즘을 제안한다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.14
no.8
/
pp.3971-3975
/
2013
This paper introduces an Augmented Reality system recognizing hand gestures and shows results of the evaluation. The system's user can interact with artificial objects and manipulate their position and motions simply by his hand gestures. Hand gesture recognition is based on Histograms of Oriented Gradients (HOG). Salient features of human hand appearance are detected by HOG blocks. Blocks of different sizes are tested to define the most suitable configuration. To select the most informative blocks for classification multiclass AdaBoostSVM algorithm is applied. Evaluated recognition rate of the algorithm is 94.0%.
Malikovich, Karimov Madjit;Akhmatovich, Tashev Komil;ugli, Islomov Shahboz Zokir;Nizomovich, Mavlonov Obid
Journal of Multimedia Information System
/
v.5
no.1
/
pp.15-20
/
2018
There are a lot of problems in the face detection area. One of them is detecting faces by facial features and reducing number of the false negatives and positions. This paper is directed to solve this problem by the proposed triangle method. Also, this paper explans cascades, Haar-like features, AdaBoost, HOG. We propose a scheme using 12-net, 24-net, 48-net to scan images and improve efficiency. Using triangle method for frontal pose, B and B1 methods for other poses in neural networks are proposed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.