• Title/Summary/Keyword: ada boost

Search Result 193, Processing Time 0.054 seconds

Stable Face Detection using Skin-tone and AdaBoost Algorithm (피부 색상 및 아다부스트 알고리즘을 이용한 안정적 얼굴감지)

  • Choi, Yoo-Joo;Byeon, Jae-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.565-568
    • /
    • 2008
  • 본 논문은 RGB 24bit 컬러 영상으로 전달되는 카메라 원영상에 대해 사람의 얼굴을 안정적으로 감지할 수 있는 알고리즘을 제시한다. RGB 입력영상을 HSI 기반의 컬러모델로 변환하여 피부 색상을 추출하고 그리드 영상을 기반으로 CCL (Connected-Component Labeling) 알고리즘을 적용하여 피부 블럽을 검출한 뒤, 아다부스트 알고리즘을 이용하여 얼굴 영역과 얼굴이 아닌 다른 피부 영역을 구분한다. 제안방법은 일반적으로 얼굴 감지를 위하여 폭넓게 사용되고 있는 아다부스트 알고리즘만을 적용하였을 때보다 얼굴감지 오류를 줄일 수 있다.

  • PDF

A Two-Stage Approach to Pedestrian Detection with a Moving Camera

  • Kim, Miae;Kim, Chang-Su
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.4
    • /
    • pp.189-196
    • /
    • 2013
  • This paper presents a two-stage approach to detect pedestrians in video sequences taken from a moving vehicle. The first stage is a preprocessing step, in which potential pedestrians are hypothesized. During the preprocessing step, a difference image is constructed using a global motion estimation, vertical and horizontal edge maps are extracted, and the color difference between the road and pedestrians are determined to create candidate regions where pedestrians may be present. The candidate regions are refined further using the vertical edge symmetry features of the pedestrians' legs. In the next stage, each hypothesis is verified using the integral channel features and an AdaBoost classifier. In this stage, a decision is made as to whether or not each candidate region contains a pedestrian. The proposed algorithm was tested on a range of dataset images and showed good performance.

  • PDF

Lip Detection Algorithm Using Color Clustering (색상 군집화를 이용한 입술탐지 알고리즘)

  • Jeong, Jongmyeon;Choi, Jiyun;Seo, Ji Hyuk;Lee, Se Jun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.277-278
    • /
    • 2012
  • 본 논문에서는 색상 군집화를 이용한 입술탐지 알고리즘을 제안한다. 이를 위해 이미 많이 알려져 있는 AdaBoost를 이용한 얼굴탐지를 수행한다. 탐지된 얼굴영역에 Lab 컬러시스템을 적용 시킨 후 입술픽셀의 특징에 따른 색상 마커를 사용하여 피부영역을 추출한다. 추출된 피부영역에 대하여 K-means 색상 군집화를 통해 입술영역을 추출한다. 그리고 실험을 통해 입술탐지 결과를 확인하였다.

  • PDF

Implementation of Pedestrian Detection using Integral Channel Feature (Integral Channel Feature를 이용한 보행자 검출 구현)

  • Kim, Dongyoung;Lee, Chung-Hee
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.779-781
    • /
    • 2015
  • 최근 여러 매체에서 화두가 되고 있는 자율 주행 자동차나 Advanced driver assistance systems (ADAS)과 같은 분야에서 보행자 검출 기술은 핵심 요소 기술 중에 하나로 손꼽히고 있다. 특히, 인간의 인지 부하(Cognitive Load)를 고려했을 때, 주행 중에 발생할 수 있는 모든 사건을 다룬다는 것은 매우 어렵기 때문에, 앞서 언급한 방법의 도움을 받아 도로 주행 중에 발생 될 수 있는 인명 사고율을 줄이고자 하는데 그 목적이 있다. 본 논문에서는 Integral Channel Feature를 사용하여 AdaBoost 알고리즘으로 보행자 검출을 위한 분류기를 구현하였다. 그 결과, INRIA에서 제공되는 Pedestrian dataset에서 Detection rate는 97%이상, False positive는 1%에 정도로 나타났다.

Human and Robot Tracking Using Histogram of Oriented Gradient Feature

  • Lee, Jeong-eom;Yi, Chong-ho;Kim, Dong-won
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.18-25
    • /
    • 2018
  • This paper describes a real-time human and robot tracking method in Intelligent Space with multi-camera networks. The proposed method detects candidates for humans and robots by using the histogram of oriented gradients (HOG) feature in an image. To classify humans and robots from the candidates in real time, we apply cascaded structure to constructing a strong classifier which consists of many weak classifiers as follows: a linear support vector machine (SVM) and a radial-basis function (RBF) SVM. By using the multiple view geometry, the method estimates the 3D position of humans and robots from their 2D coordinates on image coordinate system, and tracks their positions by using stochastic approach. To test the performance of the method, humans and robots are asked to move according to given rectangular and circular paths. Experimental results show that the proposed method is able to reduce the localization error and be good for a practical application of human-centered services in the Intelligent Space.

Boosting neural networks with an application to bankruptcy prediction (부스팅 인공신경망을 활용한 부실예측모형의 성과개선)

  • Kim, Myoung-Jong;Kang, Dae-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.872-875
    • /
    • 2009
  • In a bankruptcy prediction model, the accuracy is one of crucial performance measures due to its significant economic impacts. Ensemble is one of widely used methods for improving the performance of classification and prediction models. Two popular ensemble methods, Bagging and Boosting, have been applied with great success to various machine learning problems using mostly decision trees as base classifiers. In this paper, we analyze the performance of boosted neural networks for improving the performance of traditional neural networks on bankruptcy prediction tasks. Experimental results on Korean firms indicated that the boosted neural networks showed the improved performance over traditional neural networks.

  • PDF

Harvest Forecasting Improvement Using Federated Learning and Ensemble Model

  • Ohnmar Khin;Jin Gwang Koh;Sung Keun Lee
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.9-18
    • /
    • 2023
  • Harvest forecasting is the great demand of multiple aspects like temperature, rain, environment, and their relations. The existing study investigates the climate conditions and aids the cultivators to know the harvest yields before planting in farms. The proposed study uses federated learning. In addition, the additional widespread techniques such as bagging classifier, extra tees classifier, linear discriminant analysis classifier, quadratic discriminant analysis classifier, stochastic gradient boosting classifier, blending models, random forest regressor, and AdaBoost are utilized together. These presented nine algorithms achieved exemplary satisfactory accuracies. The powerful contributions of proposed algorithms can create exact harvest forecasting. Ultimately, we intend to compare our study with the earlier research's results.

Eye Detection Using Texture Filters (질감 필터를 이용한 눈 검출)

  • Park, Chan-Woo;Kim, Yong-Min;Park, Ki-Tae;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.6
    • /
    • pp.70-78
    • /
    • 2009
  • In this paper, we propose a novel method for eye detection using two texture filters considering textural and structural characteristics of eye regions. The human eyes have two characteristics: 1) the eyes are horizontally long and 2) the pupas are of circular shapes. By considering these two characteristics of human eyes, two texture filters are utilized for the eye detection. One is Gabor filter for detecting eye shapes in horizontal direction. The other is ART descriptor for detecting pupils of circular shape. In order to effectively detect eye regions, the proposed method consists of four steps. The first step is to extract facial regions using AdaBoost method. The second step is to normalize the illumination by considering local information. The third step is to estimate candidate regions for eyes, by merging the results from two texture filters. The final step is to locate exact eye regions by using geometric information of the face. As experimental results, the performance of the proposed method has been improved by 2.9~4.4%, compared to the existing methods.

A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image (실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Seok, Jin-Wook;Kim, Ki-Sang;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

Design of Optimized RBFNNs based on Night Vision Face Recognition Simulator Using the 2D2 PCA Algorithm ((2D)2 PCA알고리즘을 이용한 최적 RBFNNs 기반 나이트비전 얼굴인식 시뮬레이터 설계)

  • Jang, Byoung-Hee;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In this study, we propose optimized RBFNNs based on night vision face recognition simulator with the aid of $(2D)^2$ PCA algorithm. It is difficult to obtain the night image for performing face recognition due to low brightness in case of image acquired through CCD camera at night. For this reason, a night vision camera is used to get images at night. Ada-Boost algorithm is also used for the detection of face images on both face and non-face image area. And the minimization of distortion phenomenon of the images is carried out by using the histogram equalization. These high-dimensional images are reduced to low-dimensional images by using $(2D)^2$ PCA algorithm. Face recognition is performed through polynomial-based RBFNNs classifier, and the essential design parameters of the classifiers are optimized by means of Differential Evolution(DE). The performance evaluation of the optimized RBFNNs based on $(2D)^2$ PCA is carried out with the aid of night vision face recognition system and IC&CI Lab data.