• Title/Summary/Keyword: acylated

Search Result 77, Processing Time 0.03 seconds

Studies on the Utilization of Plant Pigments -I. Isolation and Identification of Anthocyanin Pigments in Ganges Amaranth- (식물성(植物性) 색소(色素)의 이용(利用)에 관(關)한 연구(硏究) -I. 꽃잎 맨드라미(Amaranthus tricolor L.)의 Anthocyanin 색소(色素)의 분리(分離) 동정(同定)-)

  • Yoon, Tai-Hyeun;Lee, Sang-Jik;Kim, Kwang-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.194-202
    • /
    • 1978
  • In order to evaluate the utility of the anthocyanin pigments in Ganges Amaranth as an edible pigment, this study was designed to isolate and identify the anthocyanins. The anthocyanins present in leaves of Ganges Amaranth were extracted with 0.1% HCl in methanol. The extracted pigments were purified by organic solvent treatment and Amberlite CG-400 Type cation exchanger, and then separated into individual pigments by paper chromatography with n-butanol-formic acid-water(100:25:60, v/v) as a solvent system. The separated pigments were identified by their Rf values, sugar moieties, complete hydrolysis and spectral characteristics in the visible and ultraviolet regions. The amounts of individual anthocyanins were also determined. The results obtained from these experiments were as follows. 1. Chromatograms of the Ganges Amaranth extract developed with BFW yielded three anthocyanin bands. The two of the anothocyanin bands were tentatively identified as malvidin-3-glucoside(acylated with caffeic acid) in band 1 and peonidin-3-glucoside (acylated with caffeic acid) in band 2. But the anthocyanin in band 3 was not identified due to extremly low concentration. 2. The amount of total anthocyanins was 101.57 mg/100g fresh weight of leaves in which 82.15 mg of malvidin-3-glucoside (acylated with caffeic acid) and 27.20 mg of peonidin-3-glucoside(acylated with caffeic acid) were contained per 100g fresh weight. Maividin-3-glucoside acylated with the acid was, therefore, the most abundant pigment in the Ganges Amaranth.

  • PDF

Phytochemical variation of Quercus mongolica Fisch. ex Ledeb. and Quercus serrata Murray (Fagaceae) in Mt. Jiri, Korea - Their taxonomical and ecological implications - (지리산 신갈나무와 졸참나무의 식물화학적 변이 양상 - 분류학적, 생태학적 의미 -)

  • Park, Jin Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.574-587
    • /
    • 2014
  • In this study, vertical distribution patterns of Quercus mongolica Fisch. ex Ledeb. and Q. serrata Murray in Korea were recognized and possibility of introgressive hybridization and gene flow between Q. mongolica and Q. serrata in Mt. Jiri was inferred by flavonoid analyses. The most critical factor on distribution patterns was the altitude in accordance with temperature condition. A zonal distribution was recognized: Quercus mongolica zone in the upper area and Q. serrata zone in the lower area. In Central Korea, the range of vertical distribution of Q. mongolica was above alt. 100m, almost everywhere, whereas that of Q. serrata was from alt. 0 m to alt. 500(-700) m, and the species is rare above that altitude. But in Southern Korea, Q. serrata is found up to above alt. 1,000 m, whereas frequency of Q. mongolica reduces as elevation in decline and the species is rare below alt. 300 m, even though pure stands being formed on higher mountain slope. Altitudinal distribution of the two species, however, overlaps, where the two species occur together. Thirty-seven individuals of Q. mongolica and Q. serrata in Mt. Jiri and other area were examined for leaf flavonoid constituents. Twenty-three flavonoid compounds were isolated and identified; they were glycosylated derivatives of the flavonols kaempferol, quercetin, isorhamnetin, myricetin, and four compounds among the flavonoid compounds were acylated. Kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside and its acylated compounds were major constituents and present in all individuals. Quercus mongolica is distinguished from Q. serrata by the presence of quercetin 3-O-arabinosylglucoside and by high concentration of three acylated compounds, acylated kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside, and by relatively low concentration or lacking of rhamnosyl flavonol compounds. There are intraspecific variations in flavonoid profiles for Q. mongolica and Q. serrata, the flavonoid profiles for individuals of two species in hybrid zone (sympatric zone) tend to be similar to each other, qualitatively and quantitatively. These findings strongly suggest that gene exchange or gene flow occurs through the introgressive hybridization between Q. mongolica and Q. serrata in Mt. Jiri. Therefore, Quercus crispula, occupying morphologically intermediate position between Q. mongolica and Q. serrata, is suspected of being a hybrid taxon of two putative parental species.

O-Acylation of Heteropolyanions Containing Two Adjacent Vanadium Atoms

  • Lee, Chul-Wee;So, Hyun-Soo;Lee, Kyu-Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.362-364
    • /
    • 1988
  • Reaction of Keggin- or Dawson-type heteropolyanions containing two adjacent vanadium atoms with acetic anhydride in the presence of acid produced acylated anions. Heteropolyanions with one or no vanadium atom do not react under the same conditions, indicating that the acyl group is attached to the bridging oxygen atom between the two vanadium atoms. A characteristic infrared band at 1760 $cm^{-1}$ was observed for the acylated anions. The 8-line EPR spectrum shows that one of the vanadium atoms is reduced to V(IV ). The acylated heteropolyanions are easily hydrolyzed, and its acyl group can also be transferred to aniline.

Flavonoid Profiles of Quercus mongolica Fisch. ex Ledeb. and Q. serrata Murray (Fagaceae) in Mt. Seorak, Korea: Taxonomical and Ecological Implications (설악산 신갈나무와 졸참나무의 플라보노이드 조성과 분류학적, 생태학적 의미)

  • Park, Jin Hee
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1092-1101
    • /
    • 2014
  • In this study, the distribution patterns of Quercus mongolica and Q. serrata in Korea were investigated, and the possibility of introgressive hybridization and gene flow between Q. mongolica and Q. serrata in Mt. Seorak was inferred by flavonoid analyses. The most critical factor in the vertical and horizontal distribution patterns of Q. mongolica and Q. serrata was the temperature, in accordance with latitude and altitude. The species showed a zonal distribution, with a Q. mongolica zone in the upper area and a Q. serrata zone in the lower area. In Mt. Seorak, Central Korea, the range of the vertical distribution of Q. mongolica was generally above an altitude of 100 m, whereas that of Q. serrata was an altitude of 0-400 m (-500) and rarely above an altitude of 500 m. However, in Mt. Jiri, Southern Korea, Q. serrata was found up to an altitude of 1,000~1,200 m, whereas the frequency of Q. mongolica was reduced at lower elevations and the species was rare below an altitude of 300 m, although pure stands were found on higher mountain slopes above an altitude of 1,200 m. The altitudinal distribution of the two species overlapped, where the two species occurred together. The leaf flavonoid constituents of thirty-four individuals of Q. mongolica and Q. serrata in Mt. Seorak and Mt. Jiri, Korea were examined. Twenty-four flavonoid compounds were isolated and identified. These were glycosylated derivatives of flavonols kaempferol, quercetin, isorhamnetin, myricetin. Five compounds among the flavonoid compounds were acylated. Kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside, and its acylated compounds were major constituents and present in all individuals. Quercus mongolica is distinguished from Q. serrata by the presence of quercetin 3-O-arabinosylglucoside, a high concentration of three acylated compounds (kaempferol 3-O-glucoside, quercetin 3-O-glucoside, and quercetin 3-O-galactoside), and a relatively low concentration or lack of rhamnosyl flavonol compounds. Intraspecific variations, however, were found in the flavonoid profiles of Q. mongolica and Q. serrata, and the flavonoid profiles of individuals belonging to the two species in a hybrid zone (sympatric zone) tended to be similar, qualitatively and quantitatively. These findings strongly suggest that gene exchange or gene flow occurs through introgressive hybridization between Q. mongolica and Q. serrata in Mt. Seorak.

Changes of Fruit Quality and Anthocyanin Composition of 'Kyoho' and 'Heukboseok' Grape Berry Skins under High Temperature at Veraison (변색기 고온에 의한 '거봉' 및 '흑보석' 포도의 과피 안토시아닌 조성 변화)

  • Ryu, Suhyun;Han, Jeom Hwa;Han, Hyun Hee;Jeong, Jae Hoon;Cho, Jung-Gun;Do, Kyeong Ran
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.213-221
    • /
    • 2018
  • We analyzed the skin coloration and anthocyanin composition of 'Kyoho' and 'Heukboseok' grape berries to determine the cause of poor coloring in 'Kyoho' berry skins under high temperature (HT) at veraison. Although the skin coloration inhibited in both 'Kyoho' and 'Heukboseok' berries under HT for 30 days from veraison, the total anthocyanin content in 'Heukboseok' berry skins increased to the level of control after the end of temperature treatment, but 'Kyoho' did not increase. Malvidin derivatives were most significantly reduced in 'Kyoho' berry skins, followed by those of delphinidin and petunidin. Among individual anthocyanins, diglucosides and acylated malvidin derivatives were most decreased in 'Kyoho' berry skins. Acylated and tri-hydroxylated anthocyanins were reduced more than those of non-acylated and dihydroxylated, respectively. All different types of anthocyanin components in 'Kyoho' berry skins decreased by HT, and they were similar to that of total anthocyanin. In 'Heukboseok' berry skins, accumulations of all different types of anthocyanins were inhibited by HT, and increased to the level of control after the end of the treatment. These results suggest that the poor coloration of 'Kyoho' under HT at veraison was not caused by the decrease of specific anthocyanins but because the whole anthocyanin biosynthesis was suppressed by HT.

Stability of Octreotide Acetate in Aqueous Solutions and PLGA Films

  • Ryu, Ki-Won;Na, Dong-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.5
    • /
    • pp.353-357
    • /
    • 2009
  • As a synthetic analog of the naturally occurring hormone somatostatin, octreotide has been commercially formulated in poly(lactide-co-glycolide) (PLGA) microspheres for the treatment of acromegaly. The purpose of this study was to evaluate stability of octreotide acetate in aqueous solutions at various pH values and PLGA films. Stability-indicating reversed-phase high-performance liquid chromatographic method was developed with good precision and accuracy, and it was applied to the stability studies. In aqueous solutions at pH 2.5-9.0, the degradation of octreotide followed approximately first order kinetics and the most favorable stability was found at pH 4. In PLGA films, the formation of acylated octreotides reached approximately 55% of the released octreotides. Various acylated octreotides was structurally identified by liquid chromatography-mass spectrometric analysis.

Differential analysis of amikacin and butirosin

  • Nam, Doo-Hyun;Ryu, D.Y.
    • Archives of Pharmacal Research
    • /
    • v.5 no.2
    • /
    • pp.87-91
    • /
    • 1982
  • In order to develop an analytical method for amikacin and butirosin in presence of their parent antibiotics, kanamycin A and ribostamycin, high-performance liquid chromatographic technique and microbioassay method were evaluated and compared. Using high performance liquid chromatography, two acylated antibiotics, amikacin and butirosin was partially separated from their parent antibiotics, to provide a qualitative analytical method. In microbioassay using Pseudomonas aeruginosa TI-13, a producer of aminoglycoside-3-phosphotransferase I, only acylated antibiotics were selectively analyzed when paper disc-susceptibility assay was used. The standard curve showed a good correlation between the response and odse in semilogarithmic plat with correlation coefficients above 0.96, and analytical deviation from expected dose was within 10%.

  • PDF

Potentiation of Th1-Type Immune Responses to Mycobacterium tuberculosis Antigens in Mice by Cationic Liposomes Combined with De-O-Acylated Lipooligosaccharide

  • Ko, Ara;Wui, Seo Ri;Ryu, Ji In;Lee, Yeon Jeong;Hien, Do Thi Thu;Rhee, Inmoo;Shin, Sung Jae;Park, Shin Ae;Kim, Kwang Sung;Cho, Yang Je;Lee, Na Gyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.136-144
    • /
    • 2018
  • Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. Bacillus Calmette-$Gu\acute{e}rin$ (BCG) vaccine is the only TB vaccine currently available, but it is not sufficiently effective in preventing active pulmonary TB or adult infection. With the purpose of developing an improved vaccine against TB that can overcome the limitations of the current BCG vaccine, we investigated whether adjuvant formulations containing de-O-acylated lipooligosaccharide (dLOS) are capable of enhancing the immunogenicity and protective efficacy of TB subunit vaccines. The results revealed that the dLOS/dimethyl dioctadecyl ammonium bromide (DDA) adjuvant formulation significantly increased both humoral and Th1-type cellular responses to TB subunit vaccine that are composed of three antigens, Ag85A, ESAT-6, and HspX. The adjuvanted TB vaccine also effectively induced the Th1-type response in a BCG-primed mouse model, suggesting a potential as a booster vaccine. Finally, the dLOS/DDA-adjuvanted TB vaccine showed protective efficacy against M. tuberculosis infection in vitro and in vivo. These data indicate that the dLOS/DDA adjuvant enhances the Th1-type immunity and protective efficacy of the TB subunit vaccine, suggesting that it would be a promising adjuvant candidate for the development of a booster vaccine.