• Title/Summary/Keyword: acyl-carrier protein

Search Result 33, Processing Time 0.027 seconds

Effect of Acylation on the Structure of the Acyl Carrier Protein P

  • Hyun, Ja-shil;Park, Sung Jean
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.149-155
    • /
    • 2015
  • Acyl carrier protein is related with fatty acid biosynthesis in which specific enzymes are involved. Especially, acyl carrier protein (ACP) is the key component in the growing of fatty acid chain. ACP is the small, very acidic protein that covalently binds various intermediates of fatty acyl chain. Acylation of ACP is mediated by holo-acyl carrier protein synthase (ACPS), which transfers the 4'PP-moiety of CoA to the 36th residue Ser of apo ACP. Acyl carrier protein P (ACPP) is one of ACPs from Helicobacter plyori. The NMR structure of ACPP consists of four helices, which were reported previously. Here we show how acylation of ACPP can affect the overall structure of ACPP and figured out the contact surface of ACPP to acyl chain attached during expression of ACPP in E. coli. Based on the chemical shift perturbation data, the acylation of ACCP seems to affect the conformation of the long loop connecting helix I and helix II as well as the second short loop connecting helix II and helix III. The significant chemical shift change of Ile 54 upon acylation supports the contact of acyl chain and the second loop.

Screening of New Antibiotics Inhibiting Bacterial Enoyl-Acyl Carrier Protein Reductase (Fabl) (세균의 지방산 생합성 효소 (Enoyl-Acyl Carrier Protein Reductase, FabI)를 저해하는 새로운 항균물질의 스크리닝)

  • 곽진환
    • YAKHAK HOEJI
    • /
    • v.46 no.1
    • /
    • pp.24-29
    • /
    • 2002
  • Enoyl-Acyl Carrier Protein Reductase (Fabl) of bacteria is hem as an important target for new antibacterial drugs and plays a determinant role in completing cycles of elongation in type-H fatty acid synthase system. In this study, a fabI gene from Staphylococcus aureus 6538p cloned in pET-l4b vector and FabI protein was over-produced in Escherichaia coli BL2l (DE3). $NH_2$-terminal His-tagged FabI protein was purified by nickel-nitrilotriacetic acid (Ni-NTA) metalaffinity chromatography Purified 6xHis-tagged FabI showed a catalytic activity on tram - 2 - octenoyl - N -acethlcysteamine by utilizing NADPH as a cofactor. For the discovery of new FabI inhibitors from chemical libraries, a target-oriented screening system using a 96-well plate was developed. About 10,000 chemical libraries from Korea Chemical Bank wore tested in this screening system, and 26 chemicals (0.25%) among them showed an inhibitory activity against FabI enzyme. This result showed that a new screening system can be used for the discovery of new FabI inhibitors.

Natural Compounds as Inhibitors of Plasmodium Falciparum Enoyl-acyl Carrier Protein Reductase (PfENR): An In silico Study

  • Narayanaswamy, Radhakrishnan;Wai, Lam Kok;Ismail, Intan Safinar
    • Journal of Integrative Natural Science
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Demand for a new anti-malarial drug has been dramatically increasing in the recent years. Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR) plays a vital role in fatty acid elongation process, which now emerged as a new important target for the development of anti-microbial and anti-parasitic molecules. In the present study, 19 compounds namely alginic acid, atropine, chlorogenic acid, chrotacumine A & B, coenzyme $Q_1$, 4-coumaric acid, curcumin, ellagic acid, embelin, 5-O-methyl embelin, eugenyl glucoside, glabridin, hyoscyamine, nordihydroguaiaretic acid, rohitukine, scopolamine, tlatlancuayin and ursolic acid were evaluated on their docking behaviour on P. falciparum enoyl-acyl carrier protein reductase (PfENR) using Auto dock 4.2. The docking studies and binding free energy calculations exhibited that glabridin gave the highest binding energy (-8.07 kcal/mol) and 4-coumaric acid in contrast showed the least binding energy (-4.83 kcal/mol). All ligands except alginic acid, ellagic acid, hyoscyamine and glabridin interacted with Gln409 amino acid residue. Interestingly four ligands namely coenzyme $Q_1$, 4-coumaric acid, embelin and 5-O-methyl embelin interacted with Gln409 amino acid residue present in both chains (A & B) of PfENR protein. Thus, the results of this present study exhibited the potential of these 19 ligands as P. falciparum enoyl-acyl carrier protein reductase (PfENR) inhibitory agents and also as anti-malarial agents.

Biochemical Characteristics of a Palmitoyl Acyl Carrier Protein Thioesterase Purified from Iris pseudoacorus

  • Kang, Han-Chul;Hwang, Young-Soo
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.436-441
    • /
    • 1996
  • The palmitoyl acyl carrier protein (ACP) specific thioesterase (EC 3.1.2.14) from Iris pseudoacorus was purified and characterized. The thioesterase which was very unstable in relatively high salt concentrations was eluted using a co-gradient of Triton X-100 and low concentration of KCl or Na-phosphate from Q-Sepharose, DEAE-Sepharose, and hydroxyapatite chromatography. SDS-PAGE analysis showed a single band with a molecular weight of 35,000. The native molecular weight of approximately 37,000 was estimated by Sephacryl S-200 chromatography, indicating that the enzyme is a monomer. The thioesterase activity was inhibited about 75% and 50% by N-ethylmaleimide (2 mM) and phenylmethylsulfonyl fluoride (2 mM). respectively. The N-ethylmaleimide-inactivation was protected by sodium palmitate but the inactivation with phenylmethylsulfonyl fluoride was not protected. Oxidation of thiols by 2 mM 5.5'-dithio-bis-(2-nitrobenzoic acid) resulted in 65% inactivation of the enzyme. These results suggest that a cysteinyl residue is essential to the catalytic reaction of the enzyme. The enzyme activity was increased by sodium citrate and also by $Cu^{2+}$

  • PDF

Purification and Characterization of Myristoyl-Acyl Carrier Protein Thioesterase from Iris tectorum

  • Kang, Han-Chul;Cho, Kang-Jin;Hwang, Young-Soo
    • Applied Biological Chemistry
    • /
    • v.41 no.4
    • /
    • pp.235-240
    • /
    • 1998
  • The myristoyl-acyl carrier protein (ACP) specific thioesterase from Iris tectorum was purified to a considerable homogeneity and characterized. The enzyme was eluted with a considerable stability by double-gradients using Triton X-100 and low ionic KCl or Na-phosphate through DEAE-52, Octyl-Sepharose, Q-Sepharose, and hydroxyapatite chromatoraphy. SDS-PAGE analysis showed a single band of 39 kDa. The native molecular weight was estimated to be 82 kDa by Sephacryl S-200 chromatography, indicating that the enzyme was a dimer. The thioesterase showed a chain-length specificity to myristoyl-ACP in preference to other-ACPs. The enzyme activity decreased by 1.0 mM myristate to about 27% of the original activity, whereas the remaining activity with decanoate was about 90%. The purified thioesterase was inhibited by myristoyl-CoA more than by myristate, suggesting that the myristoyl-AGP thiolesterase might be controlled by myristic acid and/or a subsequent product myristoyl-CoA. In addition, some biochemical characteristics of the enzyme were described.

  • PDF

Antimicrobial Flavonoid, 3,6-Dihydroxyflavone, Have Dual Inhibitory Activity against KAS III and KAS I

  • Lee, Jee-Young;Lee, Eun-Jung;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3219-3222
    • /
    • 2011
  • Three types of ${\beta}$-ketoacyl acyl carrier protein synthase (KAS) are important for overcoming the bacterial resistance problem. Recently, we reported the discovery of a antimicrobial flavonoid, YKAF01 (3,6-dihydroxyflavone), which exhibits antibacterial activity against Gram-positive bacteria through inhibition of ${\beta}$-ketoacyl acyl carrier protein synthase III (KAS III). In this report, we suggested that YKAF01 can be an inhibitor ${\beta}$-ketoacyl acyl carrier protein synthase I (KAS I) with dual inhibitory activity for KAS I as well as KAS III. KAS I is related to the elongation of unsaturated fatty acids in bacterial fatty acid synthesis and can be a good therapeutic target of designing novel antibiotics. We performed docking study of Escherichia coli KAS I (ecKAS I) and YKAF01, and determined their binding model. YKAF01 binds to KAS I with high binding affinity ($2.12{\times}10^6$) and exhibited an antimicrobial activity against the multidrug-resistant E. coli with minimal inhibitory concentration (MIC) value of 512 ${\mu}g$/mL. Further optimization of this compound will be carried out to improve its antimicrobial activity and membrane permeability against bacterial cell membrane.

Overexpression of Cuphea viscosissima CvFatB4 enhances 16:0 fatty acid accumulation in Arabidopsis

  • Yeon, Jinouk;Park, Jong-Sug;Lee, Sang Ho;Lee, Kyeong-Ryeol;Yi, Hankuil
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.282-290
    • /
    • 2019
  • Cuphea viscosissima plants accumulate medium-chain fatty acids (MCFAs), i.e., those containing 8 ~ 14 carbons, in their seeds, in addition to the longer carbon chain fatty acids (≥16 carbons) found in a variety of plant species. Previous studies have reported the existence of three C. viscosissima MCFA-producing acyl-acyl carrier protein (ACP) thioesterases with different substrate specificities. In this study, CvFatB4, a novel cDNA clone encoding an acyl-ACP thioesterase (EC 3.1.2.14), was isolated from developing C. viscosissima seeds. Sequence alignment of the deduced amino acid sequence revealed that four catalytic residues for thioesterase activity are conserved and a putative N-terminal chloroplast transit peptide is present. Overexpression of CvFatB4 cDNA, which was under the control of the cauliflower mosaic virus 35S promoter, in Arabidopsis thaliana led to an increase in 16:0 fatty acid (palmitate) levels in the seed oil at the expense of 18:1 and other non-MCFAs.

Backbone 1H, 15N, and 13C Resonance Assignments of the Helicobacter pylori Acyl Carrier Protein

  • Park, Sung-Jean;Kim, Ji-Sun;Son, Woo-Sung;Ahn, Hee-Chul;Lee, Bong-Jin
    • BMB Reports
    • /
    • v.36 no.5
    • /
    • pp.505-507
    • /
    • 2003
  • One of the small proteins from Helicobacter pylori, acyl carrier protein (ACP), was investigated by NMR. ACP is related to various cellular processes, especially with the biosynthesis of fatty acid. The basic NMR resonance assignment is a prerequisite for the validation of a heterologuous protein interaction with ACP in H.pylori. Here, the results of the backbone $^1H$, $^{15}N$, and $^{l3}C$ resonance assignments of the H. pylori ACP are reported using double- and triple-resonance techniques. About 97% of all of the $^1HN$, $^{15}N$, $^{13}CO$, $^{13}C{\alpha}$, and $^{13}C{\beta}$ resonances that cover 76 of the 78 non-proline residues are clarified through sequential- and specific-assignments. In addition, four helical regions were clearly identified on the basis of the resonance assignments.

${\beta}$-ketoacyl-acyl carrier protein synthases for fatty acid biosynthesis in bacteria

  • Lee, Hee-Jung;Youn, Youn-Ji;Ok, Jung-In;Lee, Jung-Won;Park, Hyo-Young;Cho, Kyung-Hae;Choi, Keum-Hwa
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.315.3-316
    • /
    • 2002
  • A universal set of genes encodes the components of dissociated. type II. fa11y acid synthase system that is responsible for producing the multitude of fa11y acid structures found in bacterial membranes. We examined the biochemical basis for the production of fatty acids by bacteria. Several genes from HaemophHus influenzae Rd and three genes from Enterococcus faecalis V583 were predicted to encode homologs of the ${\beta}$-ketoacyl-acyl carrier protein synthases I or II or III of Escherichia coli(FabB or BabF, or FabH)were identified in the genomic database. The protein products were expressed. purified, and biochemically characterized. efFabH and hF abH carried out the initial condensation reaction of fatty acid biosynthesis with acetyl-Coenzyme A as a primer. and hFabB and efFabF1 carried out the elongation condensation reaction of fatty acid biosynthesis with myrixtoyl-ACP.

  • PDF

Cloning, expression, purification, and crystallization of Xoo0878, β-ketoacyl-acyl carrier protein synthase III (FabH), from Xanthomonas oryzae pv. oryzae

  • Ngo, Ho-Phuong-Thuy;Nguyen, Diem-Quynh;Kim, Seunghwan;Kim, Jeong-Gu;Ahn, Yeh-Jin;Kang, Lin-Woo
    • Biodesign
    • /
    • v.7 no.2
    • /
    • pp.35-37
    • /
    • 2019
  • Xanthomonas oryzae pv. oryzae (Xoo) is a plant pathogen, which causes a bacterial blight of rice. The bacterial blight is one of the most devastating diseases of rice in most of the rice growing countries and there is no effective pesticide against bacterial blight. The β-ketoacyl-acyl carrier protein synthase III (FabH) plays a key role in fatty acid synthesis (FAS) and is a promising drug target for the development of antibacterial agents. Xoo0878 gene, a fabH gene, from Xoo was cloned and its gene product Xoo0878 was expressed, purified and crystallized. Xoo0878 crystal diffracted to 2.1Å resolution and belonged to the triclinic space group P1, with unit-cell parameters a = 57.3Å, b = 64.7Å, c = 104.2Å and α = 81.6°, β = 84.7°, γ = 74.4°. There are four monomers in the asymmetric unit, with a corresponding crystal volume per protein weight of 2.65 Å3 Da-1 and a solvent content of 53.6%. Xoo0878 structure will be useful to develop new antibacterial agents against Xoo.