• 제목/요약/키워드: acyl-CoA oxidase 3

검색결과 10건 처리시간 0.021초

Crystal Structure of Acyl-CoA Oxidase 3 from Yarrowia lipolytica with Specificity for Short-Chain Acyl-CoA

  • Kim, Sangwoo;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권4호
    • /
    • pp.597-605
    • /
    • 2018
  • Acyl-CoA oxidases (ACOXs) play important roles in lipid metabolism, including peroxisomal fatty acid ${\beta}$-oxidation by the conversion of acyl-CoAs to 2-trans-enoyl-CoAs. The yeast Yarrowia lipolytica can utilize fatty acids as a carbon source and thus has extensive biotechnological applications. The crystal structure of ACOX3 from Y. lipolytica (YlACOX3) was determined at a resolution of $2.5{\AA}$. It contained two molecules per asymmetric unit, and the monomeric structure was folded into four domains; $N{\alpha}$, $N{\beta}$, $C{\alpha}1$, and $C{\alpha}2$ domains. The cofactor flavin adenine dinucleotide was bound in the dimer interface. The substrate-binding pocket was located near the cofactor, and formed at the interface between the $N{\alpha}$, $N{\beta}$, and $C{\alpha}1$ domains. Comparisons with other ACOX structures provided structural insights into how YlACOX has a substrate preference for short-chain acyl-CoA. In addition, the structure of YlACOX3 was compared with those of medium- and long-chain ACOXs, and the structural basis for their differences in substrate specificity was discussed.

Geness for degradation of storage oil and their application to oil biotechnology

  • Nishimura, Mikio;Hayashi, Makoto;Kato, Akira;Mano, Shoji;Hayashi, Hiroshi;Yamaguchi, Katushi;Nito, Kazumasa;Fukao, Youichiro
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1999년도 제13회 식물생명공학심포지움 New Approaches to Understand Gene Function in Plants and Application to Plant Biotechnology
    • /
    • pp.37-40
    • /
    • 1999
  • cDNAs for long- and short-chain acyl-CoA oxidases in fatty acid $\beta$-oxidation were isolated and were characterized their enzymatical and molecular properties. Both oxidases were exclusively localized in glyoxysomes, indicating that glyoxysomes can completely metabolize fatty acids to acyl-CoA by their cooperative action. In order to clarify the regulatory mechanisms underlying degradation of storage oil, we tried to obtain glyoxysome-deficient mutants of Arabidopsis. We screened 2,4-dichlorophenoxybutyric acid (2,4-DB) mutants of Arabidopsis which have defects in glyoxysomal fatty acid $\beta$-oxidation. Four mutants can be classified as carrying alleles at three independent loci, which we designated pedl, ped2, and ped3, respectively (where ped stands for peroxisome defective). The characteristics of these ped mutants are described.

  • PDF

Liver PPAR${\alpha}$ and UCP2 are Involved in the Regulation of Ovariectomy-Induced Adiposity and Steatosis by Swim Training

  • Jeong, Sun-Hyo;Yoon, Mi-Chung
    • 대한의생명과학회지
    • /
    • 제16권4호
    • /
    • pp.239-246
    • /
    • 2010
  • It is suggested that ovariectomy induces body weight gain primarily in the form of adipose tissue in rodents. Since liver peroxisome proliferator-activated receptor ${\alpha}$ (PPAR${\alpha}$) and uncoupling 2 (UCP2) are involved in the regulation of energy expenditure, it was investigated whether swim training regulates ovariectomy-induced adiposity and steatosis through liver PPAR${\alpha}$ and UCP2 activation in female ovariectomized mice, an animal model of postmenopausal women. Swim-trained mice had significantly decreased adipose tissue weights compared with sedentary control mice. Histological analysis showed that hepatic lipid accumulation was inhibited by swim training. Concomitantly, swim training significantly increased mRNA levels of PPAR${\alpha}$ and its target genes responsible for peroxisomal fatty acid ${\beta}$-oxidation, such as acyl-CoA oxidase, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase and thiolase in the liver. Moreover, swim training induced the mRNA expression of UCP2. These results suggest that swim training can effectively prevent adiposity and steatosis caused by ovariectomy, in part through activation of liver PPAR${\alpha}$ and UCP2 in female obese mice.

Oxidation of fatty acid may be enhanced by a combination of pomegranate fruit phytochemicals and acetic acid in HepG2 cells

  • Kim, Ji Yeon;Ok, Elly;Kim, You Jin;Choi, Kyoung-Sook;Kwon, Oran
    • Nutrition Research and Practice
    • /
    • 제7권3호
    • /
    • pp.153-159
    • /
    • 2013
  • We investigated whether the combination of phytochemicals and acetic acid in the form of fruit vinegar provides an additive effect on changes of mRNA levels related to fatty acid oxidation in human hepatocyte (HepG2). Among the seven fruit vinegars (Rubuscoreanus, Opuntia, blueberry, cherry, red ginseng, mulberry, and pomegranate) studied, treatment of HepG2 with pomegranate vinegar (PV) at concentrations containing 1 mM acetic acid showed the highest in vitro potentiating effect on the mRNA expression levels of peroxisome proliferator-activated receptor ${\alpha}$, carnitinepalmitoyl transferase-1, and acyl-CoA oxidase compared to the control group (P < 0.05). Reversed-phase liquid chromatography in combination with quadrupole time-of-flight mass spectrometry analysis revealed four potential compounds (punicalagin B, ellagic acid, and two unidentified compounds) responsible for altered gene expression in HepG2 cells treated with PV as compared with the others. Further investigations are warranted to determine if drinking PV beverages may help to maintain a healthy body weight in overweight subjects.

Comparative analysis on genome-wide DNA methylation in longissimus dorsi muscle between Small Tailed Han and Dorper×Small Tailed Han crossbred sheep

  • Cao, Yang;Jin, Hai-Guo;Ma, Hui-Hai;Zhao, Zhi-Hui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권11호
    • /
    • pp.1529-1539
    • /
    • 2017
  • Objective: The objective of this study was to compare the DNA methylation profile in the longissimus dorsi muscle between Small Tailed Han and Dorper${\times}$Small Tailed Han crossbred sheep which were known to exhibit significant difference in meat-production. Methods: Six samples (three in each group) were subjected to the methylated DNA immunoprecipitation sequencing (MeDIP-seq) and subsequent bioinformatics analyses to detect differentially methylated regions (DMRs) between the two groups. Results: 23.08 Gb clean data from six samples were generated and 808 DMRs were identified in gene body or their neighboring up/downstream regions. Compared with Small Tailed Han sheep, we observed a tendency toward a global loss of DNA methylation in these DMRs in the crossbred group. Gene ontology enrichment analysis found several gene sets which were hypomethylated in gene-body region, including nucleoside binding, motor activity, phospholipid binding and cell junction. Numerous genes were found to be differentially methylated between the two groups with several genes significantly differentially methylated, including transforming growth factor beta 3 (TGFB3), acyl-CoA synthetase long chain family member 1 (ACSL1), ryanodine receptor 1 (RYR1), acyl-CoA oxidase 2 (ACOX2), peroxisome proliferator activated receptor-gamma2 (PPARG2), netrin 1 (NTN1), ras and rab interactor 2 (RIN2), microtubule associated protein RP/EB family member 1 (MAPRE1), ADAM metallopeptidase with thrombospondin type 1 motif 2 (ADAMTS2), myomesin 1 (MYOM1), zinc finger, DHHC type containing 13 (ZDHHC13), and SH3 and PX domains 2B (SH3PXD2B). The real-time quantitative polymerase chain reaction validation showed that the 12 genes are differentially expressed between the two groups. Conclusion: In the current study, a tendency to a global loss of DNA methylation in these DMRs in the crossbred group was found. Twelve genes, TGFB3, ACSL1, RYR1, ACOX2, PPARG2, NTN1, RIN2, MAPRE1, ADAMTS2, MYOM1, ZDHHC13, and SH3PXD2B, were found to be differentially methylated between the two groups by gene ontology enrichment analysis. There are differences in the expression of 12 genes, of which ACSL1, RIN2, and ADAMTS2 have a negative correlation with methylation levels and the data suggest that DNA methylation levels in DMRs of the 3 genes may have an influence on the expression. These results will serve as a valuable resource for DNA methylation investigations on screening candidate genes which might be related to meat production in sheep.

Gene Expression Patterns Associated with Peroxisome Proliferator-activated Receptor (PPAR) Signaling in the Longissimus dorsi of Hanwoo (Korean Cattle)

  • Lim, Dajeong;Chai, Han-Ha;Lee, Seung-Hwan;Cho, Yong-Min;Choi, Jung-Woo;Kim, Nam-Kuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권8호
    • /
    • pp.1075-1083
    • /
    • 2015
  • Adipose tissue deposited within muscle fibers, known as intramuscular fat (IMF or marbling), is a major determinant of meat quality and thereby affects its economic value. The biological mechanisms that determine IMF content are therefore of interest. In this study, 48 genes involved in the bovine peroxisome proliferator-activated receptor signaling pathway, which is involved in lipid metabolism, were investigated to identify candidate genes associated with IMF in the longissimus dorsi of Hanwoo (Korean cattle). Ten genes, retinoid X receptor alpha, peroxisome proliferator-activated receptor gamma (PPARG), phospholipid transfer protein, stearoyl-CoA desaturase, nuclear receptor subfamily 1 group H member 3, fatty acid binding protein 3 (FABP3), carnitine palmitoyltransferase II, acyl-Coenzyme A dehydrogenase long chain (ACADL), acyl-Coenzyme A oxidase 2 branched chain, and fatty acid binding protein 4, showed significant effects with regard to IMF and were differentially expressed between the low- and high-marbled groups (p<0.05). Analysis of the gene co-expression network based on Pearson's correlation coefficients identified 10 up-regulated genes in the high-marbled group that formed a major cluster. Among these genes, the PPARG-FABP4 gene pair exhibited the strongest correlation in the network. Glycerol kinase was found to play a role in mediating activation of the differentially expressed genes. We categorized the 10 significantly differentially expressed genes into the corresponding downstream pathways and investigated the direct interactive relationships among these genes. We suggest that fatty acid oxidation is the major downstream pathway affecting IMF content. The PPARG/RXRA complex triggers activation of target genes involved in fatty acid oxidation resulting in increased triglyceride formation by ATP production. Our findings highlight candidate genes associated with the IMF content of the loin muscle of Korean cattle and provide insight into the biological mechanisms that determine adipose deposition within muscle.

보중치습탕이 3T3-L1 지방전구세포의 분화 및 지방생성 억제에 미치는 영향 (Inhibitory Effects of Bojungchiseub-tang on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes)

  • 이수정;김원일;강경화
    • 동의생리병리학회지
    • /
    • 제28권3호
    • /
    • pp.288-295
    • /
    • 2014
  • Bojungchiseub-tang (BJCST) has been used in symptoms and signs of edema, dampness-phlegm, kidney failure, and so on. BJCST is also expected to have strong anti-obesity activities. However, little is known about the mechanisms of its inhibitory effects on adipocyte differentiation and adipogenesis. In the present study, we examined the effects and mechanism of BJCST on transcription factors and adipogenic genes of 3T3-L1 preadipocytes to understand its inhibitory effects on adipocyte differentiation and adipogenesis. Our results showed that BJCST significantly inhibited differentiation and adipogenesis of 3T3-L1 preadipocytes in a dose-dependent manner. To elucidate the mechanism of the effects of BJCST on lowering lipid content in 3T3-L1 adipocytes, we examined whether BJCST modulate the expressions of transcription factors to induce adipogenesis and adipogenic genes related to regulate accumulation of lipids. As a result, the expression of steroid regulatory element-binding protein (SREBP)1, cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, $C/EBP{\delta}$, and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) genes, which induce the adipose differentiation, liver X receptor $(LXR){\alpha}$ and fatty acid synthase (FAS) genes, which induce lipogenesis and adipose-specific aP2, Adipsin, lipoprotein lipase (LPL), CD36, TGF-${\beta}$, leptin and adiponectin genes, which compose fat formation were decreased. BJCST also reduced the expression of acyl CoA oxidase (ACO) and uncoupling protein (UCP) genes related to lipid oxidation. In conclusion, BJCST could regulate transcript factor related to induction of adipose differentiation and inhibited the accumulation of lipids and expression of adipogenic genes.

황정 에탄올 추출물의 비만 조절 유전자에 대한 효과 (Effects of ethanol extract of Polygonatum sibiricum rhizome on obesity-related genes)

  • 전우진;이도섭;손서연;서윤지;연승우;강재훈
    • 한국식품과학회지
    • /
    • 제48권4호
    • /
    • pp.384-391
    • /
    • 2016
  • 선행연구(12,13)에 따르면 10주간 ID1216을 투여한 비만 마우스에서 체중과 체지방이 감소하였고 이는 SIRT1-$PGC1{\alpha}$의 발현을 조절하여 나타나는 것으로 확인하였다. 본 연구는 $SIRT1-PGC1{\alpha}-PPAR{\alpha}$의 하위 기전인 UCPs, ACO, aP2의 발현 조절에 ID1216이 영향을 미쳐 그 효과를 나타내는 것을 추가로 확인한 것에 의미가 있다. 또한 10주간 ID1216을 투여한 비만 마우스의 혈액 분석 결과에서도 혈중 중성지방, LDL, HDL total cholesterol등의 혈중 지방질 수치가 개선됨과 동시에 free fatty acid의 농도는 감소하였는데 이는 ID1216이 HSL과 같은 지방질분해효소의 활성을 조절하여 중성지방의 분해과정에 관여하기는 하나 에너지 대사와 지방산 산화 과정에도 복합적으로 관여하여 최종적으로 나타내는 비만 대사 조절 효과에 의한 것으로 판단된다. 따라서 ID1216은 $SIRT1-PGC1{\alpha}-PPAR{\alpha}$ pathway를 촉진시켜 세포와 조직 수준에서 열발생(thermogenesis)에 관여하는 유전자인 UCP1, UCP2, UCP3의 발현을 증가시켰고 ${\beta}$-oxidation에 관여하는 유전자인 ACO와 aP2의 발현도 증가시켰으며 또한 지방분해(lypolysis)에 관여하는 유전자인 ATGL과 HSL의 발현을 증가시키는 분자생물학적 기전을 나타내어 체지방 감소 효과를 나타내는 것으로 확인되었다.

ACOX1 destabilizes p73 to suppress intrinsic apoptosis pathway and regulates sensitivity to doxorubicin in lymphoma cells

  • Zheng, Fei-Meng;Chen, Wang-Bing;Qin, Tao;Lv, Li-Na;Feng, Bi;Lu, Yan-Ling;Li, Zuo-Quan;Wang, Xiao-Chao;Tao, Li-Ju;Li, Hong-Wen;Li, Shu-You
    • BMB Reports
    • /
    • 제52권9호
    • /
    • pp.566-571
    • /
    • 2019
  • Lymphoma is one of the most curable types of cancer. However, drug resistance is the main challenge faced in lymphoma treatment. Peroxisomal acyl-CoA oxidase 1 (ACOX1) is the rate-limiting enzyme in fatty acid ${\beta}$-oxidation. Deregulation of ACOX1 has been linked to peroxisomal disorders and carcinogenesis in the liver. Currently, there is no information about the function of ACOX1 in lymphoma. In this study, we found that upregulation of ACOX1 promoted proliferation in lymphoma cells, while downregulation of ACOX1 inhibited proliferation and induced apoptosis. Additionally, overexpression of ACOX1 increased resistance to doxorubicin, while suppression of ACOX1 expression markedly potentiated doxorubicin-induced apoptosis. Interestingly, downregulation of ACOX1 promoted mitochondrial location of Bad, reduced mitochondrial membrane potential and provoked apoptosis by activating caspase-9 and caspase-3 related apoptotic pathway. Overexpression of ACOX1 alleviated doxorubicin-induced activation of caspase-9 and caspase-3 and decrease of mitochondrial membrane potential. Importantly, downregulation of ACOX1 increased p73, but not p53, expression. p73 expression was critical for apoptosis induction induced by ACOX1 downregulation. Also, overexpression of ACOX1 significantly reduced stability of p73 protein thereby reducing p73 expression. Thus, our study indicated that suppression of ACOX1 could be a novel and effective approach for treatment of lymphoma.

소풍순기원(疏風順氣元)이 mouse의 NMu2Li 간세포와 C2C12 골격근세포에서 PPARs 조절의 분자기전에 미치는 영향 (A Molecular Study of Sopungsungi-won(Shufengshunqiyuan) about Regulation of PPARs in Mouse NMu2Li Liver Cells and C2C12 Skeletal Muscle Myogenic Progenital Cells)

  • 오영진;신순식;윤미정;김보경
    • 동의신경정신과학회지
    • /
    • 제20권1호
    • /
    • pp.147-164
    • /
    • 2009
  • Objectives : We investigated the effects of Sopungsungi-won(Shu!engshunqiyuan) (SSEx1, SSEx2) to treat the metabolic syndrome by the molecular mechanism of regulation of PPAR and modulation of mitochondrial MCAD, VLCAD mRNA expression. Methods : Mouse NMu2Li liver cells and C2C12 skeletal muscle myogenic progenital cells were transiently transfected with expression plasmids for PPAR(PPAR${\alpha}$, PPAR${\delta}$), a luciferase reporter gene construct containing 3 copies of the PPRE from the rat acyl-CoA oxidase gene and ${\beta}$-galactosidase gene. Cells were treated with several concentrated kinds of SSEx1, SSEx2 at the initial time of culture and analyzed PPAR${\alpha}$, PPAR${\delta}$ reporter gene activity using spectrophotometer (405 nm). Total RNA was extracted from SSEx1, SSEx2 and measured mRNA levels of mitochondrial MCAD, VLCAD. Representative RT-PCR bands are shown. Results : 1. SSEx1 increased the expression of PPAR${\alpha}$ reporter gene activities at 0.1 ${\mu}$g/ml (p${\mu}$g/ml (p<0.05), SSEx2 at 0.1 ${\mu}$g/ml (p${\mu}$g/ml (p<0.05) significantly in NMu2Li liver cell lines. 2. SSEx1 increased the expression of PPAR${\alpha}$ reporter gene activities at 1 ${\mu}$g/ml (p${\mu}$g/ml (p${\alpha}$ reporter gene activities in C2C12 skeletal muscle cells. 4. SSEx1 increased the modulation of mitochondrial MCAD mRNA expression (p<0.05) significantly in NMu2Li liver cell lines. 5. SSEx1, SSEx2 both increased the modulation of mitochondrial MCAD mRNA expression (p<0.05) significantly in C2C12 skeletal muscle cells. Conclusions : These results show the SSEx1, SSEx2 can be used as therapeutic agent for metabolic syndrome and it's molecular mechanisms of PPAR more contribute to the activation of PPAR${\alpha}$ then PPAR${\delta}$ reporter gene activities and it's total RNA more contribute to the modulation of mitochondrial MCAD then VLCAD mRNA expression.

  • PDF