• Title/Summary/Keyword: acute ethanol-induced liver injury

Search Result 19, Processing Time 0.027 seconds

Fermented Aloe arborescens Miller Leaf Extract Suppresses Acute Alcoholic Liver Injury via Antioxidant and Anti-Inflammatory Effects in C57BL/6J Mice

  • Min Ju Kim;Joon Hurh;Ha-Rim Kim;Sang-Wang Lee;Hong-Sig Sin;Sang-Jun Kim;Eun-mi Noh;Boung-Jun Oh;Seon-Young Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.463-470
    • /
    • 2023
  • This study confirmed the change in functional composition and alcohol-induced acute liver injury in Aloe arborescens after fermentation. An acute liver injury was induced by administration of ethanol (3 g/kg/day) to C57BL/6J mice for 5 days. A fermented A. arborescens Miller leaf (FAAL) extract was orally administered 30 minutes before ethanol treatment. After fermentation, the emodin content was approximately 13 times higher than that of the raw material. FAAL extract significantly attenuated ethanol-induced aspartate aminotransferase, alanine aminotransferase, and triglyceride increases in serum and liver tissue. Histological analysis revealed that FAAL extract inhibits inflammatory cell infiltration and fat accumulation in liver tissues. The cytochrome P450 2E1, superoxide dismutase, and glutathione (GSH), which involved in alcohol-induced oxidative stress, were effectively regulated by FAAL extract in serum and liver tissues, except for GSH. FAAL also maintained the antioxidant defense system by upregulating heme oxygenase 1 and nuclear factor erythroid 2-related factor 2 protein expression. In addition, FAAL extract inhibited the decrease in alcohol dehydrogenase and aldehyde dehydrogenase activity, which promoted alcohol metabolism and prevented the activation of inflammatory response. Our results suggest that FAAL could be used as a potential therapeutic agent for ethanol-induced acute liver injury.

Protective Effects of Fucoidan against Acute Alcohol-induced Liver Injury in Rats (후코이단이 쥐의 급성 알콜성 간손상에 미치는 영향)

  • Kim, Mi-Ja;Jeon, Joseph;Lee, Sung Pyo;Lee, Jin-Sil
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.219-223
    • /
    • 2014
  • The purpose of this study was to investigate the protective effects of fucoidan on acute alcohol-induced liver injury in rats. Experimental animals were randomly divided into four groups: (1) a control group, (2) a group fed 25% ethanol, (3) a group fed 25% ethanol and 250 mg/kg BW of fucoidan (25% ethanol+FUCO250), and (4) a group fed 25% ethanol and 500 mg/kg BW of fucoidan (25% ethanol+FUCO500). Each group was fed orally two times per day for 15 days. Liver weights in the 25% ethanol group were increased compared to the control group, while liver weights in the 25% ethanol+FUCO500 group were significantly decreased compared to the 25% ethanol group (p<0.05). Plasma concentrations of triglyceride, cholesterol, and LDL-cholesterol were elevated in the 25% ethanol group; however, these levels in the 25% ethanol+FUCO250 group were significantly decreased compared to the 25% ethanol group (p<0.05). The glutamic-pyruvic transaminase activity of the 25% ethanol+FUCO500 group also was significantly lower than the 25% ethanol group (p<0.05). These results indicate that fucoidan might protect against acute alcohol-induced liver injury.

Hepatoprotective Evaluation of Ganoderma lucidum Pharmacopuncture: In vivo Studies of Ethanol-induced Acute Liver Injury

  • Jang, Sun-Hee;Cho, Sung-Woo;Yoon, Hyun-Min;Jang, Kyung-Jeon;Song, Chun-Ho;Kim, Cheol-Hong
    • Journal of Pharmacopuncture
    • /
    • v.17 no.3
    • /
    • pp.16-24
    • /
    • 2014
  • Objectives: Alcohol abuse is a public issue and one of the major causes of liver disease worldwide. This study was aimed at investigating the protective effect of Ganoderma lucidum pharmacopuncture (GLP) against hepatotoxicity induced by acute ethanol (EtOH) intoxication in rats. Methods: Sprague-Dawley (SD) rats were divided into 4 groups of 8 animals each: normal, control, normal saline pharmacopuncture (NP) and GLP groups. The control, NP and GLP groups received ethanol orally. The NP and the GLP groups were treated daily with injections of normal saline and Ganoderma lucidum extract, respectively. The control group received no treatment. The rats in all groups, except the normal group, were intoxicated for 6 hours by oral administration of EtOH (6 g/kg BW). The same volume of distilled water was administered to the rats in the normal group. Two local acupoints were used: Qimen (LR14) and Taechung (LR3). A histopathological analysis was performed, and the liver function and the activities of antioxidant enzymes were assessed. Results: GLP treatment reduced the histological changes due to acute liver injury induced by EtOH and significantly reduced the increase in the alanine aminotransferase (ALT) enzyme; however, it had an insignificant effect in reducing the increase in aspartate aminotransferase (AST) enzyme. It also significantly ameliorated the superoxide dismutase (SOD) and the catalase (CAT) activities. Conclusion: The present study suggests that GLP treatment is effective in protecting against ethanol-induced acute hepatic injury in SD rats by modulating the activities of ethanol-metabolizing enzymes and by attenuating oxidative stress.

A method of background noise removal of Raman spectra for classification of liver disease (간 질병 분류를 위한 라만 스펙트럼의 배경 잡음 제거 방법)

  • Park, Aaron;Baek, Sung-June
    • Smart Media Journal
    • /
    • v.2 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In this paper, we investigated baseline estimation methods for remove background noise using Raman spectra from acute alcohol liver injury and acute ethanol-induced chronic liver fibrosis. Far the baseline estimation, we applied first derivative, linear programming and rolling ball method. Optimal input parameter of each method were determined by the training rate of MAP (maximum a posteriori probability) classifier. According to the experimental results, classification results baseline estimation with the rolling ball algorithm gave about 89.4%, which is very promising results for classification of acute alcohol liver injury and acute ethanol-induced chronic liver fibrosis. From these results, to determined the appropriate methods and parameters of baseline estimation impact on classification performance was confirmed.

  • PDF

The Extract of Limonium tetragonum Protected Liver against Acute Alcohol Toxicity by Enhancing Ethanol Metabolism and Antioxidant Enzyme Activities

  • Kim, Na-Hyun;Sung, Sang Hyun;Heo, Jeong-Doo;Jeong, Eun Ju
    • Natural Product Sciences
    • /
    • v.21 no.1
    • /
    • pp.54-58
    • /
    • 2015
  • The protective effect of EtOAc fraction of Limonium tetragonum extract (EALT) against alcohol-induced hepatotoxicity was assessed following acute ethanol intoxication in Spraque-Dawley rats. EALT (200 mg/kg p.o.) was administrated once before alcohol intake (8 g/kg, p.o.). Blood ethanol concentration, and the activities of alcohol metabolic enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the liver were measured. Also, the formation of malondialdehyde (MDA) and the activities of antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GSH-px), catalase were determined after acute alcohol exposure. Pretreatment of rats received ethanol with EALT significantly decreased blood ethanol concentration and elevated the activities of ADH and ALDH in liver. The increased MDA level was decreased, and the reduced activities of SOD, GSH-px and catalase were markedly preserved by the treatment with EALT. This study suggests that EALT prevent hepatic injury induced by acute alcohol which is likely related to its modulation on the alcohol metabolism and antioxidant enzymes activities.

Diets with corn oil and/or low protein increase acute acetaminophen hepatotoxicity compared to diets with beef tallow in a rat model

  • Hwang, Jin-Ah
    • Nutrition Research and Practice
    • /
    • v.3 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • It has been reported that dietary polyunsaturated fats (PUFA) increase liver injury in response to ethanol feeding. We tested the hypothesis that diets rich in linoleic acid (18:2n-6) would affect acute liver injury after acetaminophen injection and that protein restriction might exacerbate the liver injury. We examined effects of feeding diets with either 15% (wt/wt) corn oil or 14% beef tallow and 1% corn oil for six weeks with either 6 or 20 g/100 g protein on acute hepatotoxicity. After the feeding period, liver injury was induced by injecting either with 600 mg/kg body weight acetaminophen suspended in gum arabic-based vehicle, or with vehicle alone during fasting status. Samples of liver and plasma were taken for analyses of hepatic glutathione (GSH) levels and liver-specific enzymes [(Glutamate-pyruvate transaminase (GPT) and glutamate-oxaloacetate transaminase (GOT)], respectively. Whereas GSH level was significantly lower in only group fed 15% corn oil with 6 g/100 g protein among acetaminophen-treated groups, activities of GPT and GOT were significantly elevated in all groups except the one fed beef tallow with 20 g/100 g protein, suggesting low protein might exacerbate drug-induced hepatotoxicity. The feeding regimens changed the ratio of 18:2n-6 to oleic acid (18:1n-9) in total liver lipids approximately five-fold, and produced modest changes in arachidonic acid (20:4n-6). We conclude that diets with high 18:2n-6 promote acetaminophen-induced liver injury compared to diets with more saturated fatty acids (SFA). In addition, protein restriction appeared to exacerbate the liver injury.

Effect of fermented Hovenia dulcis Thunb fruit water extract on biomarker for liver injury and body weight changes in rats given oral administration of ethanol (헛개열매추출액발효물이 흰쥐의 에탄올 경구투여에 의한 간손상 지표와 체중 감량 완화에 미치는 영향)

  • Choi, Ji-Young;Kim, Jun-Han;Kim, Gho;Kim, Choon-Kyung;Choi, Myung-Sook
    • Food Science and Preservation
    • /
    • v.21 no.3
    • /
    • pp.412-420
    • /
    • 2014
  • This study was performed to investigate the effect of fermented Hovenia dulcis Thunb fruit water extract on biomarkers for acute (a) ethanol-induced hangover and chronic (c) ethanol-induced liver injury in rats. For acute ethanol-induced hangover, the rats were administered distilled water (D.W., 10 mL/kg body wt.), Hovenia dulcis Thunb fruit water extract (HWE, 400 mg/10 mL/kg body wt.) and fermented HWE (FHWE, 400 mg/10 mL/kg body wt.), respectively, before 40% ethanol (5 g/kg body wt.) was administered. For chronic ethanol-induced liver injury, the rats were randomly divided into the normal control (cNC), ethanol (cET), cET-HWE and cET-FHWE groups. The cNC and cET groups were administered D.W. (10 mL/kg body wt.) before 40% alcohol (5 g/kg body wt.) was administrered for 21 days. The cET-HWE and cET-FHWE groups were administered HWE (400 mg/10 mL/kg body wt.) and FHWE (400 mg/10 mL/kg body wt.), respectively before 40% ethanol (5 g/kg body wt.) administration for 21 days. For acute ethanol-induced hangover, the serum alcohol and acetaldehyde concentrations were more significantly reduced in the aHWE and aFHWE groups than in the aET group. Moreover, the effect of FHWE was greater than that of HWE. For chronic ethanol-induced liver injury, the serum ethanol, acetaldehyde, ${\gamma}$-glutamyl transpeptidase (${\gamma}$-GTP) levels and the hepatic lipids concentration more significantly dropped in the cET-HWE and cET-FHWE groups than in the cET group. The FHWE administration showed faster recovery of the serum glucose concentration than in the cET and cET-HWE groups. The body weight reduction tended to normalize in the cET-HWE and cET-FHWE groups, which is ideal for chronic ethanol administration. These results suggest that FHWE has a protective effect against ethanol-induced liver damage, as evidenced by its ability to lower the serum ethanol and acetaldehyde concentrations after alcohol administration, and by its ability to decrease the level of ${\gamma}$-GTP and hepatic lipids. FHWE also elevated serum glucose concentration. Therefore, FHWE is effective in reducing ethanol-induced hangover and can play a beneficial role in the treatment of ethanol-induced liver damage as well as body weight reduction.

Protective Effect of Dandelion Extracts on Ethanol-Induced Acute Hepatotoxicity in C57BL/6 Mice

  • Liu, Xiao-Yu;Ma, Jie;Park, Chung-Mu;Chang, Hee-Kyung;Song, Young-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.269-275
    • /
    • 2008
  • Dandelion (Taraxacum officinale) has been widely used as an anti-inflammatory agent in oriental medicine. In the current study, we investigated the protective effect, and the possible mechanism, of dandelion extracts against ethanol-induced acute hepatotoxicity in C57BL/6 mice. Dandelion water and ethanol extract was administered at 2 g/kg body weight (BW) once daily for 7 consecutive days, whereas control and ethanol groups received water by gavage. Ethanol (50% ethanol; 6 g/kg BW) was administered 12 hr before sacrificing the mice in order to generate liver injury. Significantly increased serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities as well as liver triglyceride (TG) and cholesterol levels were attenuated by dandelion supplementation. In addition, dandelion extracts not only enhanced alcohol dehydrogenase (ADH) and anti-oxidative enzyme activities, but reduced lipid peroxidation. Cytochrome P450 2E1 (CYP 2E1), one of the critical enzymes xenobiotic metabolism, expression was lower with ethanol treatment but restored by dandelion supplementation. These results were confirmed by improved histopathological changes in fatty liver and hepatic lesions induced by ethanol. In conclusion, dandelion could protect liver against ethanol administration by attenuating of oxidative stress and inflammatory responses.

The Ameliorating Effect of Hoveniae Semen Seu Fructus Extract against Ethanol-induced Psychomotor Alterations in Rats (흰쥐에서 지구자 추출물의 에탄올 유도 숙취 행동 개선 효능)

  • dela Pena, Irene Joy I.;de la Pena, June Bryan;Cheong, Jae Hoon
    • YAKHAK HOEJI
    • /
    • v.58 no.5
    • /
    • pp.300-306
    • /
    • 2014
  • Ethanol consumption causes psychomotor alterations. Hovenia Semen seu Fructus (HS), widely distributed in Korea, China, and Japan, has been reported to have beneficial effects on acute alcohol-induced liver injury. The present study sought to assess the effects of HS extract on ethanol-induced psychomotor alterations in rats. Sprague-Dawley rats were orally (p.o.) given ethanol (4 g/kg) (ethanol group) to induce psychomotor alterations. A separate group (HS-treated groups), were treated with different dosages of HS (50, 100, and 200 mg/kg, p.o.), 30 minutes before ethanol treatment. The control group received only the vehicle (saline). Ethanol-induced psychomotor alterations were evaluated in the open-field, rota-rod, hanging wire, and cold swimming test. In addition, blood ethanol and acetaldehyde concentrations were also measured. Behavioral evaluations and blood analysis were carried out 0.5, 1, 2, 4, and 8 hours after ethanol administration. Pre-treatment of HS ameliorated ethanol-induced alterations in the open-field, rota-rod, and cold swimming test, significantly evident in 2 and 4 hours after ethanol treatment. These improvements coincided with decrease in blood ethanol and acetaldehyde concentration. Based on these results, the present study suggests that HS may have ameliorating effects against ethanol-induced psychomotor alterations.

Protective Effects of Ethanol Extract of Allium hookeri Root on Acute Alcohol-Induced Intoxication in ICR Mice (급성 알코올 독성을 유발한 ICR Mouse에서 Allium hookeri 뿌리 에탄올 추출물의 간 기능 보호 효과)

  • Kang, Hae-Young;Lee, Cho-Eun;Ly, Sun-Yung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.5
    • /
    • pp.625-633
    • /
    • 2016
  • Allium hookeri is known as a healthy food since it contains larger amounts of sulfur compounds than commonly known alliaceous plants. The antioxidant and anti-inflammatory effects of A. hookeri were compared between two types of extracts, $80^{\circ}C$ water and 95% ethanol extracts of A. hookeri roots. A. hookeri root 95% ethanol extracts displayed superior total polyphenol content, antioxidant activity [1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical scavenging activity], and anti-inflammation activity than those of water extracts (P<0.05). We studied the effects of A. hookeri root 95% ethanol extracts (95% ethanol extracts group: AHE) on acute alcohol-induced intoxication in mice. AHE [250, 500, and 1,000 mg/kg body weight (BW)/d] was orally administered to the study group once a day for 1 week. On the last day of AHE treatment, 40% ethanol (10 mL/kg BW) was orally administered to induce acute liver injury. The blood alcohol concentration of mice treated with AHE was significantly lower compared to the control group (P<0.05). The levels of hepatic aspartate aminotransferase and alanine aminotransferase were lower in the AHE-treated group than the control group (P<0.05). The RT-PCR results for alcohol dehydrogenase and aldehyde dehydrogenase measured based on mRNA in liver tissues showed that enzyme activities were higher in the AHE-treated group than in the control group at a low blood alcohol concentration.