• 제목/요약/키워드: actuation system

검색결과 336건 처리시간 0.02초

햅틱 피드백 극대화를 위한 오리가미 펌프 기반의 소프트 구동기 시스템 (A Soft Actuation System with Origami Pump for Maximizing Haptic Feedback)

  • 정평국;장혁준;차영수
    • 로봇학회논문지
    • /
    • 제16권1호
    • /
    • pp.29-34
    • /
    • 2021
  • Traditional actuation system such as electric and pneumatic actuator has obvious advantages and disadvantages. To combine advantages and compensate disadvantages of the traditional actuation, a pneumatic actuation system with an internal air pressure source is noteworthy approach. In this paper, a soft pneumatic actuation system based on origami pump is described for haptic feedback glove. To improve wearability, an origami pump is introduced because the origami pump is much lighter than air compressor. The miniaturized electric actuation system is also designed with 3D printed planetary gear in order to reduce the volume of the system. To figure out the performance of the system, shrinkage distance of origami pump was measured with vision camera. The pressure in the origami pump was also estimated to understand the performance of the system.

전단압전가진기를 이용한 인치웜 가진시스템의 개발 (Development of a New Inchworm Actuation System U sing Piezoelectric Shearing Actuators)

  • 이상원
    • 한국정밀공학회지
    • /
    • 제24권8호통권197호
    • /
    • pp.81-88
    • /
    • 2007
  • This paper presents the development of a new inchworm actuation system using the shearing deformation of the piezoelectric actuators. In this new actuation system, piezoelectric shearing/expanding actuators, an inertial mass and an advanced preload system are configured innovatively to generate the motion of an inertial mass. There are two modes in the new actuation system: (1) stick mode, and (2) clamp mode. In stick mode, the deformation of the piezoelectric shearing actuators drives an inertial mass by means of the friction force at their contact interface. On the other hand, in clamp mode, the piezoelectric expanding actuators provide the gripping force to an inertial mass and, as a result, eliminate its backward motion following the rapid backward deformation of the piezoelectric shearing actuators. To investigate the feasibility of the proposed new actuation system, the experimental system is built up, and the static performance evaluation and dynamic analysis are conducted. The open-loop performance of the linear motion of the proposed new actuation system is evaluated. In dynamic analysis, the mathematical model for the contact interface is established based on the LuGre friction model and the equivalent parameters are identified.

압전 소자 기반 구동 유닛의 히스테리시스 보상 강인 제어기 설계 (A Robust Control System Design for Compensating Hysteresis of a Piezoelectric Actuator-based Actuation Unit)

  • 김화수;김종원
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.324-330
    • /
    • 2012
  • In this paper, we presents a robust control system design for compensating hysteresis of a piezoelectric actuator-based actuation unit. First, the dynamics between the input voltage and the output displacement of the actuation unit are unravelled via a non-parametric system identification method. From the dynamic characteristics of those experimental transfer functions, a parametric model is then derived, whose dynamics match those of the non-parametric ones under various conditions on input voltages. A robust controller is constructed on the basis of this parametric model in order not only to effectively compensate the hysteresis of the actuation unit but also to guarantee the robust stability. Extensive experiments show that the proposed robust control system successfully mitigate the effect of the hysteresis and improve the tracking capability of the actuation unit.

공압구동장치를 위한 PWM 제어기 설계 (Development of a PWM controller for the pneumatic actuation system)

  • 이동우;안병홍;문의준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.7-12
    • /
    • 1989
  • This paper describes the design and development of a PWM electronic controller for a high performance Pneumatic Actuation System. The task includes the design of a closed center valve circuit for minimum gas consumption, the selection of optimum values for key parameters in the PWM circuit, and the design of lag-lead compensation circuit. These were carried out through specific experiments using a prototype pneumatic actuation system. The final performance obtained with the actuation system confirmed the successful design of the developed PWM electronic controller.

  • PDF

상온기체 블로우다운 방식을 사용한 유도무기용 유압식 구동장치의 공압부에 대한 모델링 및 시뮬레이션 (Modeling and Simulation of the Pneumatic Part in a Cold Gas Blow-Down Type Hydraulic Actuation System for a Missile)

  • 박희승
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권3호
    • /
    • pp.1-7
    • /
    • 2016
  • A cold gas blow-down hydraulic actuation system is widely used in missiles that require an actuation system with a fast response time under a limited space with a short operating time and large loads on the actuators. The system consists of a pneumatic part that supplies the regulated high-pressure gas to a reservoir, and a hydraulic part that supplies pressurized hydraulic oil to the actuators by the pressurized gas in the reservoir. This paper proposes a mathematical model to analyze and simulate the pneumatic part of an actuation system that supplies the operating power to the actuators. The mathematical model is based on the ideal gas equation and also considers the models for heat transfer. The model is applied to the pressure vessel and the gas part of the reservoir, and the model for the pneumatic part is established by connecting the two models for the parts. The model is validated through a comparison of the simulation results with the experimental results. The comparison shows that the suggested model could be useful in the design of the pneumatic part of a cold gas blow-down type hydraulic actuation system.

고고도 발사체용 전기유압식 구동장치시스템 개발 (Development of Electrohydraulic Actuation System for High Altitude Launch Vehicle)

  • 민병주;최형돈;강이석
    • 한국항공우주학회지
    • /
    • 제34권12호
    • /
    • pp.82-89
    • /
    • 2006
  • 본 논문에서는 고도 300 km 이상의 고고도 고진공 우주환경에서 발사체의 피치 및 요방향 자세 및 궤적제어를 추력벡터제어 방식으로 수행하는 전기유압식 구동장치시스템의 개발 결과를 기술한다. 성층권 이하에서 운용하는 저고도 발사체용 전기유압식 구동장치시스템과 비교하여 강화된 개발 요구규격 및 이를 충족시키기 위한 신규 설계 및 제작 기술, 성능 검증을 위한 시험장치의 개발 및 이를 사용한 시험 수행 결과를 본 논문에 요약하였다. 시스템 자체 성능 검증을 위한 시험 및 평가가 성공적으로 완료된 구동장치시스템은 관련 시스템과의 접속 및 통합 적합성 검증 후 KSLV-I 발사체에 탑재될 예정이다.

DSP 카드 및 PC에 의한 공압구동장치의 실시간 모의시험기 개발 (Development of a Pneumatic Actuation System Real-Time Simulator Using a DSP Board and PC)

  • 이성래;신효필
    • 제어로봇시스템학회논문지
    • /
    • 제6권4호
    • /
    • pp.320-326
    • /
    • 2000
  • The real-time simulator of a pneumatic actuation system that is composed of differential PWM signal generator, charge solenoid valve, discharge solenoid valve, actuator, load, and rotational potentiometer is developed using a DSP board and a PC. The simulator receives the control signals from the external controller through the A/D converter, updates the state and output variables of the Pneumatic actuation system responding to the input signals every sampling time, and sends out the output signals through the D/A converter in real time. The user can observe the displacements, velocities, pressures, and mass flows representing the operation of pneumatic actuation system through the PC monitor in real time. Also the user can see the moving images between the pistons and rotating arm realistically in real time. The accuracy of the real-time simulator is verified by the good agreement of the real-time simulation results and the experimental results of the pneumatic actuation system.

  • PDF

발사체 추력벡터제어용 전기-기계식 구동장치시스템 특성 연구 (Characteristic Research of Electromechanical Actuation System for Launch Vehicle Thrust Vector Control)

  • 민병주;최형돈;강이석
    • 항공우주기술
    • /
    • 제6권2호
    • /
    • pp.164-170
    • /
    • 2007
  • 본 논문에서는 근래에 들어 중/소형급 추진기관을 갖는 발사체의 추력벡터제어용 구동 장치시스템으로 적용 연구가 활발히 진행되고 여는 전기-기계식 구동장치시스템에 대한 설계 및 해석, 이에 기반을 둔 시제품 제작 및 시험 수행 결과를 기술하였다. 아울러 발사체 적용 추진기관 형상 및 규모를 기준으로 적합한 구동장치시스템의 원천동력 형상을 분류하였다. 국내에서 개발 중인 중/소형 추진기관 추력벡터제어용 구동장치시스템의 원천 동력은 배터리의 전기동력이며 이를 사용한 구동장치 형상은 전기-유압식과 전기-기계식으로 구분된다. 전기-기계식 형상이 전기-유압식 보다 작은 동력 변환 과정을 수행하기 때문에 원천동력 대비 구동기 출력동력의 비율을 나타내는 전효율이 우수한 것으로 분석되었다. 아울러 유사한 동력 규모와 기능을 갖는 구동장치시스템을 구성할 경우 전기-기계식 형상이 소요 부품의 수가 감소하여 중량 측면에서도 우위에 있음을 알 수 있었다.

  • PDF

자동차 엔진용 2단 가변밸브 기구의 스위칭 시스템 동적 거동에 관한 연구 (A Study on the Dynamic Behavior of a 2-step Variable Valve Switching System for Automotive Engines)

  • 김동일;김도중
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.39-48
    • /
    • 2014
  • Variable valve actuation system is one of the widely used techniques to improve the fuel efficiency and power of automotive engines. 2-step variable valve actuation systems are also paid attention for the application to direct acting type valve train systems. Besides its advantages in size, weight, relatively simple structure, ets, however, 2-step variable valve actuation system has inherent disadvantages in dynamic instability of switching system to alter discontinuous lift modes. In this study, both experimental and analytical studies are performed to understand the dynamic behavior of a switching mechanism of a 2-step variable valve actuation system, and present a design method to improve its dynamic instability.

고속 수중운동체의 유압식 구동장치 설계 연구 (A study on the design of a hydraulic actuator for high-speed underwater vehicle)

  • 곽동훈;양승윤;이동권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.839-844
    • /
    • 1992
  • There are many specific requirements in the actuation, system for high speed underwater vehicle, such as size, weights, power etc.. In this paper, a high performance compact hydraulic actuation system to satisfy such requirements was designed. The controller of the system was designed using both the conventional PID and VSC which were known to have reliability, robustness respectively. The performance analysis was done for the designed actuation system through computer simulation.

  • PDF