• 제목/요약/키워드: actuation effect

검색결과 96건 처리시간 0.027초

Force Control of Hybrid Actuator Using Learning Vector Quantization Neural Network

  • Aan Kyoung-Kwan;Chau Nguyen Huynh Thai
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.447-454
    • /
    • 2006
  • Hydraulic actuators are important in modern industry due to high power, fast response, and high stiffness. In recent years, hybrid actuation system, which combines electric and hydraulic technology in a compact unit, can be adapted to a wide variety of force, speed and torque requirements. Moreover, the hybrid actuation system has dealt with the energy consumption and noise problem existed in the conventional hydraulic system. Therefore, hybrid actuator has a wide range of application fields such as plastic injection-molding and metal forming technology, where force or pressure control is the most important technology. In this paper, the solution for force control of hybrid system is presented. However, some limitations still exist such as deterioration of the performance of transient response due to the variable environment stiffness. Therefore, intelligent switching control using Learning Vector Quantization Neural Network (LVQNN) is newly proposed in this paper in order to overcome these limitations. Experiments are carried out to evaluate the effectiveness of the proposed algorithm with large variation of stiffness of external environment. In addition, it is understood that the new system has energy saving effect even though it has almost the same response as that of valve controlled system.

Force Control of Hybrid Actuator using Learning Vector Quantization Neural Network

  • Ahn, Kyoung-Kwan;Thai Chau, Nguyen Huynh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.290-295
    • /
    • 2005
  • Hydraulic actuators are important in modern industry due to high power, fast response, and high stiffness. In recent years, hybrid actuation system, which combines electric and hydraulic technology in a compact unit, can be adapted to a wide variety of force, speed and torque requirements. Moreover, the hybrid actuation system has dealt with the energy consumption and noise problem existed in the conventional hydraulic system. Therefore, hybrid actuator has a wide range of application fields such as plastic injection-molding and metal forming technology, where force or pressure control is the most important technology. In this paper, the solution for force control of hybrid system is presented. However, some limitations still exist such as deterioration of the performance of transient response due to the variable environment stiffness. Therefore, intelligent switching control using Learning Vector Quantization Neural Network (LVQNN) is newly proposed in this paper in order to overcome these limitations. Experiments are carried out to evaluate the effectiveness of the proposed algorithm with large variation of stiffness of external environment. In addition, it is understood that the new system has energy saving effect even though it has almost the same response as that of valve controlled system.

  • PDF

Fuzzy Logic을 적용한 간선도로 상의 교통감응 신호제어 (Development of the Traffic Actuation Signal Control System Based on Fuzzy Logic on an Arterial Street)

  • 진선미;김성호;도철웅
    • 대한교통학회지
    • /
    • 제21권3호
    • /
    • pp.71-83
    • /
    • 2003
  • 교차로의 신호시간 계획이나 간선도로 축의 제어에 있어서 가장 대표적인 문제는 수시로 변화하는 교통상황이다. 또한 이러한 변화로 인해 정확한 교통 데이터를 얻기 힘들고, 그에 대한 분석 또한 어렵다. 따라서 본 논문에서는 이러한 불명확한 교통데이터를 이용하여 교차로 및 간선도로의 제어를 하기 위해, 인간의 사고와 유사한 추론이 가능하다고 판단되는 Fuzzy Logic을 적용함으로써 불명확한 상황에 대하여 수학적인 함수로 표현되지는 않지만 언어적인(Linguistic) 제어가 가능하도록 하여, 기존의 교통제어 방법보다 교통상황에 민감하게 대처할 수 있는 새로운 제어전략을 제시하였다. 본 연구는 "영상검지기를 이용한 실시간 교통신호 감응제어(김성호, 1996)"의 독립교차로의 신호 제어 부분을 기초로 하여 간선도로 상의 연속진행 제어에 대한 전략을 제안하고, 그 효과를 기존의 제어 방법에 의한 효과와 비교·분석하였다. 또한 각 제어 방법에 대한 분석을 위하여, 교통 시뮬레이션 소프트웨어인 TRAF-NETSIM을 이용하여 각각의 효과를 비교하였다.

잉여 다리 병렬형 로봇의 해석 (Analysis of parallel manipulators with redundant limbs)

  • 김성복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.730-733
    • /
    • 1996
  • This paper presents the kinematic and dynamic analysis of parallel manipulators with redundant limbs, obtained by putting additional limbs to an existing parallel manipulator. We develop the kinematic and dynamic models of a parallel, manipulator with redundant limbs. The redundancy in parallelism due to the increased number of limbs and the redundancy in actuation due to the increased number of active joints are considered in the modeling. Based on the derived models, we define the kinematic and dynamic manipulabilities of a parallel manipulator with redundant limbs. The effect of the redundant limbs on the performance of parallel manipulators is analyzed in terms of kinematic and dynamic manipulabilities.

  • PDF

선형홀센서를 이용한 전기식 구동장치의 속도 신호 구현 (A New Velocity Measurement Method using Linear Type Hall-effect Sensor for Electro-mechanical Fin Actuator)

  • 구정회;송치영
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.70-75
    • /
    • 2010
  • The objective of this paper is to propose a new velocity measurement method for an electro-mechanical fin actuator. The model of the electro-mechanical fin actuator includes uncertainties such as unknown disturbances and parameter variations in flight condition. So, an electro-mechanical fin actuator system needs robust control algorithm which requires not only position information but also velocity information. Usually, analog tachometers have been used for velocity feedback in an electro-mechanical fin actuator. However, using these types of sensors have problems such as the cost, space, and malfunction. These problems lead to propose a new velocity measurement method using linear type Hall-effect sensor. In order to verify the proposed method, several experiments are performed using Model Following Sliding Mode Controller(MFSMC). It is shown that the MFSMC with a new velocity measurement method using linear type Hall-effect sensor can satisfy the requirements without using of velocity sensor.

선형홀센서와 고성능 미분기를 이용한 BLDC모터의 속도신호 구현 (Realization of Velocity of BLDC Motor Using Linear Type Hall-effect Sensor and Enhanced Differentiator)

  • 구정회;최장영
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.840-845
    • /
    • 2018
  • BLDC motor is widely used as a servo motor due to high efficiency, high power density, low inertia, and low maintenance. However, BLDC motor generally needs position and velocity sensors to control actuation system. Usually, analog tachometers and encoders have been used for velocity feedback sensors. However, using these types of sensors have problems such as the cost, space, and malfunction. So, This paper is to propose a new velocity measurement method using linear hall-effect and enhanced differentiator for BLDC motor. In order to verify the feasibility of the proposed method, several simulations and experiments are performed. It is shown that the proposed velocity measurement method can satisfy the requirements without using of velocity sensor.

형상기억합금의 양방향효과를 이용한 두개의 형상기억합금선이 부착된 작동기의 수치해석 (Numerical Simulation of Double SMA wire Actuator Using Two-Way Shape Memory Effect of SMA)

  • 김상헌;조맹효
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.287-290
    • /
    • 2004
  • A structure using the two-way shape memory effect (TWSME) returns to its initial shape by increasing or decreasing temperature under initial residual stress. Through the thermo-mechanical constitutive equation of shape memory alloy(SMA) proposed by Lagoudas et al., we simulate the behavior of a double actuator in which two SMA wires are attached to the tip of panel under the initially given residual stress. Through the numerical results conducted in the present study, the proposed actuator device is suitable for repeated actuation. The simulation algorithm proposed in the present study can be applied extensively to the analysis of the assembled .system of SMA-actuator and host structure in the practical applications.

  • PDF

Structural vibration control using resistively shunted piezoceramics

  • Kandagal, S.B.;Venkatraman, Kartik
    • Structural Engineering and Mechanics
    • /
    • 제14권5호
    • /
    • pp.521-542
    • /
    • 2002
  • Application of piezoceramic materials in actuation and sensing of vibration is of current interest. Potential and more popular applications of piezoceramics are probably in the field of active vibration control. However, the objective of this work is to investigate the effect of shunted piezoceramics as passive vibration control devices when bonded to a host structure. Resistive shunting of a piezoceramic bonded to a cantilevered duralumin beam has been investigated. The piezoceramic is connected in parallel to an electrical network comprising of resistors and inductors. The piezoceramic is a capacitor that stores and discharges electrical energy that is transformed from the mechanical motion of the structure to which it is bonded. A resistor across the piezoceramic would be termed as a resistively shunted piezoceramic. Similarly, an inductor across the piezoceramic is termed as a resonantly shunted piezoceramic. In this study, the effect of resistive shunting on the nature of damping enhancement to the host structure has been investigated. Analytical studies are presented along with experimental results.

기계임피던스 감소기법을 이용한 회전형 전기-유압식 구동기의 모델 없는 토크제어방법 (Model-Free Torque Control of Rotary Electro-Hydraulic Actuator using Mechanical Impedance Reduction)

  • 이웅용;정완균
    • 로봇학회논문지
    • /
    • 제15권1호
    • /
    • pp.77-89
    • /
    • 2020
  • This paper proposes a simple and intuitive model-free torque-tracking control for rotary electro-hydraulic actuators. The undesirable natural-velocity-feedback effect is discussed by introducing mechanical impedance into the electro-hydraulic actuation system. The proposed model-free torque control comprises inner- and outer-loop control to achieve two control objectives. Inner-loop control reduces the mechanical impedance passively and optimally. To improve the tracking accuracy, a certain form of proportional-integral-derivative control is applied to the outer loop. The robustness of the proposed closed-loop system against external disturbances is demonstrated by transforming the two-loop control structure into a disturbance observer form. The proposed method is validated on a single joint electro-hydraulic actuator.

The Effect of Single Wall Carbon Nanotubes on the Dipole Orientation and Piezoelectric Properties of Polymeric Nanocomposites

  • Kang, Jin-Ho;Park, Cheol;Gaik Steven J.;Lowther Sharon E.;Harrison Joycelyn S.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.245-245
    • /
    • 2006
  • Recent studies of single wall carbon nanotube (SWNT)/polyimide nanocomposites indicate that these materials have a potential to provide the combination of structural integrity and sensing/actuation capability. This study shows the effect of the SWNT type and concentration on the dipole orientation and piezoelectric properties of the electroactive polymide nanocomposites using a thermally stimulated current (TSC) spectroscopy. These nanocomposites exhibit very thermally stable piezoelectric properties up to $150^{\circ}C$. This presentation will highlight the dipole orientation and electroactive characteristics of the SWNT/polyimide nanocomposites and discuss their potential multifunctional aerospace applications.

  • PDF