• Title/Summary/Keyword: actual concrete structures

Search Result 255, Processing Time 0.022 seconds

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.

Effect of Coating Materials for Steel on the Threshold of Corrosive Amount of Airborne Chlorides and the Evaluation of Their Corrosion Speeds (강재마감별 부식개시 임계 비래염분량 및 부식속도 평가)

  • Cho, Gyu-Hwan;Lim, Myung-Hyun;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.143-151
    • /
    • 2015
  • Many studies have investigated the airborne chlorides that can weaken the overall durability of the concrete structures due to the corrosion of steel materials, but most of the studies have aimed to examine weathering by exposing various construction materials to the actual oceanic environment. However, with the exposure test, it was difficult to find the threshold of precise corrosive amount of airborne chlorides due to diverse deteriorating environmental factors such as ultraviolet ray, acid rain, floating material from industrial pollution as well as airborne chlorides. Therefore, in this study, an airborne chloride simulator was set up, in oder to conduct a corrosion accelerating test for steels coated by five different finishing materials. As results, it was found that the corrosion began to be observed at $0.58{\sim}0.73mg/dm^2$ for no-coated steel, at $7.89{\sim}8.46mg/dm^2$for urethane-coated steel, at $57.95{\sim}69.48mg/dm^2$ for red lead-coated steel, and at $80.73{\sim}89.35mg/dm^2$ for stainless-coated steel, respectively. Hence, these specific data can be considered as the threshold ranges of corrosion for each coating material for steel.

Basic Research on Revetments Development of Erosion Protection for Coastline Creation of Hydrophilic Environment by Field Observation (현장관측에 의한 친환경 해안조성을 위한 침식방지 호안공 개발에 관한 기초적 연구)

  • Lee, Jong-Seok;Han, Jae-Myung
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.983-993
    • /
    • 2008
  • In recent times, sea level increasing caused by abnormal weather and global warming, sea-sand dredging and complex development causes various kind of erosion damages onto the coastal area in the world. The various types of erosion control and protection methods are applied but there are no signs of fruitful effectiveness. The PC concrete protection block for shore protection structure is practically installed in globally but most of structures in the present day became villainous because of bad accessability. In this study, hydrophilic revetments for control and protection of coastline erosion will be developed in order to make up for a faculty of the shore erosion protection block with better accessibility and excellent protection ability. Experimental measurements were researched to insure for the capacity and facility on reflection coefficient, overtopping volume, and overtopping height characteristics of newly developed shore erosion protection block in model tests. As the result, hydraulic model tests show much excellent than the general step block. Field tests were carried out also to verify through vegetative test on an affinity and construction work test of control-protection on coastline erosion with actual utilization. In the latter case, deposition of sand accumulation occurred in fairly short time at the established reaches and then we can be confirmed to utilize for newly developed block as the revetments for control and protection of coastline erosion.

A Study on the Effect of Fire Heat on the Durability of Concrete Structures Repaired and Reinforced with Epoxy Resin (화열(火熱)이 에폭시수지로 보수·보강된 콘크리트 구조체의 내구성에 미치는 영향에 관한 연구)

  • Tai Kwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.138-145
    • /
    • 2023
  • Purpose: In accordance with the increase in the number of buildings repaired and reinforced following deterioration from when a fire occurs in a previously reinforced building, the impact on the structure after the fire is analyzed to establish standards for repair and reinforcement measures. Method: After curing for 28 days, the process was to measure the compressive strength and induce destruction through a compressor, repair and reinforce it with epoxy, and conduct a re-compressive strength test on some specimens after curing for 3 days to understand the degree of strength restoration. The rest of the repaired and reinforced specimens as well as the unrepaired and unreinforced specimens were then put into an oven and heated according to the temporal and temperate conditions listed below, and then the compressive strength was tested to estimate the impact of fire. Result: After reinforcing the yielded specimen with epoxy, the process was to then put it in an oven and heat it at different temperatures over time. It was found that there was a decrease in the strength of the reinforcement more than that of the actual specimen. Conclusion: Based on this, it was found that a building repaired and reinforced with epoxy resin is actually more dangerous than a general unrepaired building when it is damaged by fire, and thus, that it must be prepared for fire vulnerabilities.

Analysis of Actual State of Facilities for Pleurotus eryngii Cultivation - Based on Western Gyeongnam Area - (큰느타리버섯 재배사의 실태분석 - 서부경남지역을 중심으로 -)

  • Yoon Yong Cheol;Suh Won Myung;Yu Chan
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.217-225
    • /
    • 2004
  • This study was performed to provide the basic knowledge about the mushroom cultivation facilities. Classified current status of cultivation facilities in Gyeongnam province was investigated by questionnaire. The structure of Pleurotus eryngii cultivation facilities can be classified into the simple and permanent frame type. The simple frame structures were mostly single-span type, on the other hand, the permanent frame structures were more multi-span than simple structures. And the scale of cultivation facilities was very different regardless of structural type. But as a whole, the length, width and ridge height were prevailing approximately 20.0 m, $6.6\~7.0m$ and $4.6\~5.0m$ range, respectively. The floor area was about $132\~160\;m^2$, and floor was built with concrete to protect mushrooms from various harmful infection. The roof slope of the simple and permanent type showed about $41.5^{\circ}\;and\;18.6\~28.6^{\circ}$, respectively. The width and layer number of growing bed for mushroom cultivation were around $1.2\~1.6m$, 4 layers in common, respectively. Most of year round cultivation facilities were equipped with cooler, heater, humidifier, and ventilating fan. Hot water boiler was the most commonly used heating system, the next was electric heater and then steam boiler. The industrial air conditioner has been widely used for cooling. And humidity was controlled mostly by ultra-wave or centrifuging humidifier. But some farmers has been using nozzle system for auxiliary purpose. More then $90\%$ of the mushroom house had the independent environment control system. The inside temperature was usually controlled by sensor, but humidity and $CO_2$ concentration was controlled by timer for each growing stage. The capacity of medium bottle was generally 850 cc and 1100cc, some farms used 800 cc, 950 co and 1,250 cc. Most of mushroom producted has been usually shipped to both circulating company and joint market.