• Title/Summary/Keyword: active-sensing

Search Result 400, Processing Time 0.035 seconds

ESTIMATION RAIN RATE FROM MICROWAVE RADIOMETER

  • Park K. W.;Kim Y. S.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.201-203
    • /
    • 2004
  • We present here, some of the studies carried for estimation of rainfall over land and oceanic regions in and around South Korea. We use active and passive microwave measurements from TRMM - TMI and Precipitation Radar (PR) respectively during a typhoon even named - RUSA that took place during 30 Aug. 2002. We have followed due approach by Yao at. all (2002) and examined the performance of their algorithm using two main predictor variable, named as Scattering Index (SI) and Polarization Corrected Brightness Temperature (PCT) while using TMI data. The rainfall rate estimated using PCT and SI shows some under-estimation as compared to the AWS rainfall products from the PR in common area of overlap. A larger database thus would be used in future. To establish a new rain rate algorithm over Korean region based on the present case study.

  • PDF

Development of KITSAT. The First Korean Satellite and Space Development Strategy (우리별 위성개발(衛星開發)과 우주개발정책(宇宙開發政策)의 과제(課題))

  • Choi, Soon-Dal
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.6
    • /
    • pp.267-283
    • /
    • 1994
  • Application of space technology in the field of communication and remote sensing becomes increasingly important in human life. Advancement of communications means shinks the size of our globe and that of remote sensing techniques improves the quality of human well-being. It is a world trent for each country to make its best effort in advancing its capabilities in these fields sometimes independently and other times jointly with other nations. Korea being no exception to this world trend is planning various starategies in application and development of space technologies. However, unfortunately, Korea is a new commer in this field. Statellite Technology Research Center (SaTReC) of Korea Advanced Institute of Science and Technology (KAIST) initiated to aquire satellite technology by sending its graduates abroad in 1989. As a result KITSAT-1 was launched in 1992 and KITSAT- 2 was launched in 1993 and they became Korea's first two satellites in orbits. Academic program including On-the Job-Training for Korean students at the University of Surrey, UK, is also an innovative scheme of mixing education and practical know-how for successful technology transfer, which resulted in a small but very capable and effective satellite experts group in Korea for self-propelled research and development in space activities. In this context, space development strategy should be considered in terms of the following factors; (1). Participation in international space activities as an active member to utilize international organization and to contribute to the peaceful use of space, (2). Development of national defence structure for independent activities in space, (3). Enhancement of manpower utilization for space development and promotion of national pride and (4). Education of youngsters for the extension of intellectual activities into the limitless space. In order to make very costly space development project most efficient, governmental level space development organization directed by the head of nation should be established and should manage all space development programs making full use of its all available resources including the advantage of the university based R&D capability.

  • PDF

A Probabilistic Approach for Mobile Robot Localization under RFID Tag Infrastructures (RFID Tag 기반 이동 로봇의 위치 인식을 위한 확률적 접근)

  • Won Dae-Heui;Yang Gwang-Woong;Choi Moo-Sung;Park Sang-Deok;Lee Ho-Gil
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1034-1039
    • /
    • 2005
  • SALM(Simultaneous localization and mapping) and AI(Artificial intelligence) have been active research areas in robotics for two decades. In particular, localization is one of the most important tasks in mobile robot research. Until now expensive sensors such as a laser sensor have been used for mobile robot localization. Currently, the proliferation of RFID technology is advancing rapidly, while RFID reader devices, antennas and tags are becoming increasingly smaller and cheaper. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used for identifying location of the mobile robot in the smart floor. We discuss a number of challenges related to this approach, such as tag distribution (density and structure), typing and clustering. In the smart floor using RFID tags, the localization error results from the sensing area of the RFID reader, because the reader just knows whether the tag is in the sensing range of the sensor and, until now, there is no study to estimate the heading of mobile robot using RFID tags. So, in this paper, two algorithms are suggested to. The Markov localization method is used to reduce the location(X,Y) error and the Kalman Filter method is used to estimate the heading($\theta$) of mobile robot. The algorithms which are based on Markov localization require high computing power, so we suggest fast Markov localization algorithm. Finally we applied these algorithms our personal robot CMR-P3. And we show the possibility of our probability approach using the cheap sensors such as odometers and RFID tags for mobile robot localization in the smart floor

  • PDF

Analysis of Land Cover Change Around Desert Areas of East Asia (식생 자료를 이용한 동아시아 사막 주변의 토지피복 변화 분석)

  • Ryu, Jae-Hyun;Han, Kyung-Soo;Pi, Kyoung-Jin;Lee, Min-Ji
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.105-114
    • /
    • 2013
  • Desertification of the East Asia area induced by human's indiscriminate activities and natural causes has gradually expanded and demanded scientific research for monitoring and predicting land cover condition. Therefore, this research classified land types which were compared to MODIS land cover and analyzed the extent of barren zone effecting Korea through yellow dust using S10-DAY MVC NDVI from SPOT between 1999 and 2011. This study used unsupervised classification after processing NDVI Correction and Water Mask for eliminating noise values included in the data for enhancement of classification accuracy. The results of analysis are that there are active variations near the borders of desert, especially the Mongolian steppe and the Gobi Desert in central Asia. In addition, the extent of entire desert has been decreased in the middle of the last decade, although desertification is in going on in East Asia.

Cobalt Oxide-Tin Oxide Composite: Polymer-Assisted Deposition and Gas Sensing Properties (PAD법으로 제작된 산화코발트-산화주석 복합체의 가스 감응 특성)

  • An, Sea-Yong;Li, Wei;Jang, Dong-Mi;Jung, Hyuck;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.611-616
    • /
    • 2010
  • A cobalt oxide - tin oxide nanocomposite based gas sensor on an $SiO_2$ substrate was fabricated. Granular thin film of tin oxide was formed by a rheotaxial growth and thermal oxidation method using dc magnetron sputtering of Sn. Nano particles of cobalt oxide were spin-coated on the tin oxide. The cobalt oxide nanoparticles were synthesized by polymer-assisted deposition method, which is a simple cost-effective versatile synthesis method for various metal oxides. The thickness of the film can be controlled over a wide range of thicknesses. The composite structures thus formed were characterized in terms of morphology and gas sensing properties for reduction gas of $H_2$. The composites showed a highest response of 240% at $250^{\circ}C$ upon exposure to 4% $H_2$. This response is higher than those observed in pure $SnO_2$ (90%) and $Co_3O_4$ (70%) thin films. The improved response with the composite structure may be related to the additional formation of electrically active defects at the interfaces. The composite sensor shows a very fast response and good reproducibility.

A Study on the Frame Sensor Modeling Using Standard Interface (표준 인터페이스를 적용한 프레임 센서 모델링에 관한 연구)

  • Kwon, Wonsuk;Choi, Sunyong;Lee, Yongwoong
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • Until recently, photogrammetric applications for processing the satellite images and remotely sensed data have been used in different structure of functions and interfaces for sensor modeling by each developer. Thus, a standardized utilization procedure was necessary to solve the problems, such as expandability, cost, inefficiency of sources which were resulted from different approaches. Therefore, National Geospatial Intelligence Agency (NGA) provided unified interfaces by developing Community Sensor Model (CSM) to sensor models in same way. In this study, we suggested the method of design and analyzed main functions needed modeling for the frame sensor using CSM Application Program Interface (API) provided by NGA. We also applied the designed structure to the modeling. The implemented CSM was verified by groundToImage and imageToGround. In the future, the active R&D is expected with using CSM due to the cost saving effect of software development and remarkable expandability of sensor.

DEM Generation and Accuracy Comparison from Multiple Kompsat-2 Images (다중 Kompsat-2 영상으로부터 생성된 DEM 정확도 분석)

  • Rhee, Soo-Ahm;Jeong, Jae-Hoon;Lee, Tae-Yoon;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • Accurate DEM(Digital Elevation Model) generation using satellite images is an active research topic. This paper focuses on generation of a DEM with multiple Kompsat-2 images. For DEM generation, we applied an orbit-attitude sensor model and a RPM sensor model to stereo and multiple Kompsat-2 images respectively. For matching, we used an object-space based matching method. Through the result of this experiment, we could confirm that the sensor model from multiple images is more accurate than the model from stereo images. Also DEM from multiple images gave much better performance than DEM from stereo images.

In-situ and remote observation of Cochlodinium.p blooms and consequences of physical features off the Korean coast

  • Ahn Yu-Hwan;Shanmugam P.;Ryu Joo-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.553-556
    • /
    • 2004
  • Spatial and temporal aspects of toxic dinoflagellate Cochlodinium.p blooms and consequences of physical features in complex coastal ecosystems, off the southern Korean coast, have been investigated using data obtained from SeaWiFS and AVHRR as well as in-situ observations. Hydrographic parameters measured using CTD sensors were used to elucidate physical factors affecting the spatial distribution and abundance of Cochlodinium.p blooms. The results show spatial and temporal variations of chlorophyll-a (Chl-a) and sea surface temperature (SST) and reveal significant information about Cochlodinium.p blooms and process underlying their evolution. Satellitederived Chl-a estimates appear to be potential in explicating the evolution, movement and distribution of Cochlodinium.p blooms in the enclosed bays of the South Sea. The existence of thromohaline waters offshore provide favorable conditions for the rapid growth and subsequent southward initiation of Cochlodinium.p blooms that are influenced to flow on the offshore branch (OB) during September. It was observed that there was a significant variation in the sun-induced chlorophyll-a fluorescence signal in the remote sensing fluorescence spectra and its high-intensity was recognized during the period of exponential growth and physical transport. Satellite-derived Chl-a concentration during September 1999 ranged between $3­60mg/m^3$ inside the Jin-hae and adjacent Bays and $1-6mg/m^3$ in offshore waters, with varying Cochlodinium.p abundances 1500 to 26000 cells $ml^{-1}.$ The closely spaced CTD surveys and satellite-derived SST give a complete overview on the initiation of Cochlodinium.p blooms in hydrodynamically active regions of the offshore southern East Sea by the influence of Tsushima Warm Current (TWC).

  • PDF

JAXA'S EARTH OBSERVING PROGRAM

  • Shimoda, Haruhisa
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.7-10
    • /
    • 2006
  • Four programs, i.e. TRMM, ADEOS2, ASTER, and ALOS are going on in Japanese Earth Observation programs. TRMM and ASTER are operating well, and TRMM operation will be continued to 2009. ADEOS2 was failed, but AMSR-E on Aqua is operating. ALOS (Advanced Land Observing Satellite) was successfully launched on $24^{th}$ Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). PRISM is a 3 line panchromatic push broom scanner with 2.5m IFOV. AVNIR-2 is a 4 channel multi spectral scanner with 10m IFOV. PALSAR is a full polarimetric active phased array SAR. PALSAR has many observation modes including full polarimetric mode and scan SAR mode. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. Next generation satellites will be launched in 2008-2012 timeframe. They are GOSAT (Greenhouse Gas Observation Satellite), GCOM-W and GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GOSAT will carry 2 instruments, i.e. a green house gas sensor and a cloud/aerosol imager. The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 ${\mu}m$ region with 0.2 to 0.5 $cm^{-1}$ resolution. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). Discussions on future Earth Observation programs have been started including discussions on ALOS F/O.

  • PDF

A Probabilistic Approach for Mobile Robot Localization under RFID Tag Infrastructures

  • Seo, Dae-Sung;Won, Dae-Heui;Yang, Gwang-Woong;Choi, Moo-Sung;Kwon, Sang-Ju;Park, Joon-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1797-1801
    • /
    • 2005
  • SLAM(Simultaneous localization and mapping) and AI(Artificial intelligence) have been active research areas in robotics for two decades. In particular, localization is one of the most important issues in mobile robot research. Until now expensive sensors like a laser sensor have been used for the mobile robot's localization. Currently, as the RFID reader devices like antennas and RFID tags become increasingly smaller and cheaper, the proliferation of RFID technology is advancing rapidly. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used to identify the mobile robot's location on the smart floor. We discuss a number of challenges related to this approach, such as RFID tag distribution (density and structure), typing and clustering. In the smart floor using RFID tags, because the reader just can senses whether a RFID tag is in its sensing area, the localization error occurs as much as the sensing area of the RFID reader. And, until now, there is no study to estimate the pose of mobile robot using RFID tags. So, in this paper, two algorithms are suggested to. We use the Markov localization algorithm to reduce the location(X,Y) error and the Kalman Filter algorithm to estimate the pose(q) of a mobile robot. We applied these algorithms in our experiment with our personal robot CMR-P3. And we show the possibility of our probability approach using the cheap sensors like odometers and RFID tags for the mobile robot's localization on the smart floor.

  • PDF