• Title/Summary/Keyword: active-sensing

Search Result 400, Processing Time 0.025 seconds

Electrochemical Biosensors based on Nanocomposites of Carbon-based Dots

  • Ngo, Yen-Linh Thi;Jana, Jayasmita;Chung, Jin Suk;Hur, Seung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.499-513
    • /
    • 2020
  • Among the many studies of carbon-based nanomaterials, carbon-based dots (CDs) have attracted considerable interest owing to their large surface area, intrinsic low-toxicity, excellent biocompatibility, high solubility, and low-cost with environmentally friendly routes, as well as their ability for modification with other nanomaterials. CDs have several applications in biosensing, photocatalysis, bioimaging, and nanomedicine. In addition, the fascinating electrochemical properties of CDs, including high active surface area, excellent electrical conductivity, electrocatalytic activity, high porosity, and adsorption capability, make them potential candidates for electrochemical sensing materials. This paper reviews the recent developments and synthesis of CDs and their composites for the proposed electrochemical sensing platforms. The electrochemical principles and future perspective and challenges of electrochemical biosensors are also discussed based on CDs-nanocomposites.

An Investigation of the Learning Styles of South Korean Business Students

  • Naik, Bijayananda;Girish, V.G.
    • Asia-Pacific Journal of Business
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • The Index of Learning Styles (ILS) instrument based on the Felder-Silverman Learning Style Model was used to determine distribution of learning styles of 125 South Korean business students enrolled in a South Korean institution of higher education. Results show that greater proportion of South Korean business students surveyed in this study prefer sensing over intuitive, visual over verbal, reflective over active, and global over sequential learning styles. The majority of business students have a balanced learning style in all four dimensions of the Felder-Silverman model. Among the students that do not have a balanced learning style, students with sensing, visual, reflective, and global learning styles dominate. Gender difference in learning style preference was not statistically significant for any of the four dimensions.

  • PDF

REPONSE OF POLYMERIC MEMBRANES AS SENSING ELEMENTS FOR ELECTRONIC TOUGUE

  • Bae, Y.M.;Cho, S.I.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.219-226
    • /
    • 2000
  • The study was executed for development of sensing elements of electronic tongue which could discriminate taste of liquid and semi-liquid foods. Five polymeric membranes which were composed of polymer, plasticizer, electro-active materials were prepared. After each polymeric membranes were mounted in an electrode body, membrane potentials due to electrochemical reaction with taste stimuli were measured. The experimental results were interpreted in view of the membrane's non-selective responses to stimuli.

  • PDF

Mobile Robot Path Planner for Environment Exploration (효율적 환경탐사를 위한 이동로봇 경로 계획기)

  • Bae, Jung-Yun;Lee, Soo-Yong;Lee, Beom-Hee
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.9-16
    • /
    • 2006
  • The Mobile robots are increasingly being used to perform tasks in unknown environments. The potential of robots to undertake such tasks lies in their ability to intelligently and efficiently search in an environment. An algorithm has been developed for robots which explore the environment to measure the physical properties (dust in this paper). While the robot is moving, it measures the amount of dust and registers the value in the corresponding grid cell. The robot moves from local maximum to local minimum, then to another local maximum, and repeats. To reach the local maximum or minimum, simple gradient following is used. Robust estimation of the gradient using perturbation/correlation, which is very effective when analytical solution is not available, is described. By introducing the probability of each grid cell, and considering the probability distribution, the robot doesn't have to visit all the grid cells in the environment still providing fast and efficient sensing. The extended algorithm to coordinate multiple robots is presented with simulation results.

  • PDF

Developing a Mathematical Model For Wheat Yield Prediction Using Landsat ETM+ Data

  • Ghar, M. Aboel;Shalaby, A.;Tateishi, R.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.207-209
    • /
    • 2003
  • Quantifying crop production is one of the most important applications of remote sensing in which the temporal and up-to-date data can play very important role in avoiding any immediate insufficiency in agricultural production. A combination of climatic data and biophysical parameters derived from Landsat7 ETM+ was used to develop a mathematical model for wheat yield forecast in different geographically wide Wheat growing districts in Egypt. Leaf Area Index (LAI) and fraction of Absorbed Photosynthetically Active Radiation (fAPAR) with temperature were used in the modeling. The model includes three sub-models representing the correlation between the reported yield and each individual variable. Simulation results using district statistics showed high accuracy of the derived correlations to estimate wheat production with a percentage standard error (%S.E.) of 1.5% in El- Qualyobia district and average (%S.E.) of 7% for the whole wheat areas.

  • PDF

The Fabrications of Vertical Trench Hall-Effect Device for Non-contact Angular Position Sensing Applications (비 접촉 각도 센서 응용을 위한 수직 Hall 소자의 제작)

  • Park, Byung-Hwee;Jung, Woo-Chul;Nam, Tae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.251-253
    • /
    • 2002
  • We have fabricated a novel Vertical Trench Hall-Effect Device sensitive to the magnetic field parallel to the sensor chip surface for non-contact angular position sensing applications. The Vertical Trench Hall-Effect Device is built on SOI wafer which is produced by silicon direct bonding technology using bulk micromachining, where buried $SiO_2$ layer and surround trench define active device volume. Sensitivity up to 150 V/AT is measured.

  • PDF

A Study on the memory management techniques using Sensing Data Filtering of Wireless sensor nodes (무선센서노드의 센싱 데이터 필터링을 사용한 메모리 관리 기법에 대한 연구)

  • Kang, Yeon-I;Kim, Hwang-Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1633-1639
    • /
    • 2010
  • Recently Wireless sensor networks have been used for many purposes and is active for this study. The various methods to reduce energy consumption, which are actively being studied Wireless sensor network to reduce energy consumption, leading to improve transport efficiency, Cluster can be viewed using the research methods. Cluster method researches consists of a sensor node to the cluster and in among those they take out the Cluster head node and Cluster head node is having collects sensing information of circumferential nodes sensing to sink node transmits. Selected as cluster head sensor nodes so a lot of the energy consumption is used as a cluster head sensor nodes is lose a shorter life span have to be replaced by another sensor node. In this paper, to complement the disadvantages of a cluster-mesh method, proposes to manage memory efficiently about filtering method for sensing data. Filtering method to store the same data sensing unlike traditional methods of data filtering system sensing first sent directly by the hashing algorithm to calculate the hash table to store addresses and Sensing to store data on the calculated address in a manner to avoid duplication occurred later, and sensing data is not duplicated by filtering data to be stored in the hash table is a way.

Active-Sensing Based Damage Monitoring of Airplane Wings Under Low-Temperature and Continuous Loading Condition (능동센서 배열을 이용한 저온 반복하중 환경 항공기 날개 구조물의 손상 탐지)

  • Jeon, Jun Young;Jung, Hwee kwon;Park, Gyuhae;Ha, Jaeseok;Park, Chan-Yik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.345-352
    • /
    • 2016
  • As aircrafts are being operated at high altitude, wing structures experience various fatigue loadings under cryogenic environments. As a result, fatigue damage such as a crack could be develop that could eventually lead to a catastrophic failure. For this reason, fatigue damage monitoring is an important process to ensure efficient maintenance and safety of structures. To implement damage detection in real-world flight environments, a special cooling chamber was built. Inside the chamber, the temperature was maintained at the cryogenic temperature, and harmonic fatigue loading was given to a wing structure. In this study, piezoelectric active-sensing based guided waves were used to detect the fatigue damage. In particular, a beamforming technique was applied to efficiently measure the scattering wave caused by the fatigue damage. The system was used for detection, growth monitoring, and localization of a fatigue crack. In addition, a sensor diagnostic process was also applied to ensure the proper operation of piezoelectric sensors. Several experiments were implemented and the results of the experiments demonstrated that this process could efficiently detect damage in such an extreme environment.

Evaluation of Effective Sensing Distance and Measurement Efficiency for Ground-Based Remote Sensors with Different Leaf Distribution in Tobacco Plant (연초의 엽위 분포형태에 따른 지상 원격센서의 유효 탐사거리와 측정 효율성 평가)

  • Jeong, Hyun-Cheol;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.126-136
    • /
    • 2008
  • Tobacco plants grown in pots by sand culture for 70 days after transplanting were used to evaluate the sensing distance and measurement efficiency of ground-based remote sensors. The leaf distribution of tobacco plant and sensing distance from the sensors to the target leaves were controlled by two removal methods of leaves, top-down and bottom-up removal. In the case of top-down removal, the canopy reflectance was measured by the sensor located at a fixed position having an optimum distance from the detector to the uppermost leaf of tobacco every time that the higher leaves were one at a time. The measurement of bottom-up removal, a the other hand, was conducted in the same manner as that of the top-down removal except that the lower leaves were removed one by one. Canopy reflectance measurements were made with hand held spectral sensors including the active sensors such as $GreenSeeker^{TM}$ red and green, $Crop\;Circle\;ACS-210^{TM}$ red and amber, the passive sensors of $Crop\:Circle^{TM}$, and spectroradiometer $SD2000^{TM}$. The reflectance indices by all sensors were generally affected by the upper canopy condition rather than lower canopy condition of tobacco regardless of sensor type, passive or active. The reflectance measurement by $GreenSeeker^{TM}$ was affected sensitively at measurement distance longer than 120 cm, the upper limit of effective sensing distance, beyond which measurement errors are appreciable. In case of the passive sensors that has no upper limit of effective distance and $Crop\;Circle^{TM}(ACS210)$ that has the upper limit of effective sensing distance specified with 213 cm, longer than that of estimated distance, the measurement efficiency affected by the sensing distance showed no difference. This result suggests that it is necessary to use the sensor specified optimum distance. The result revealed that active sensors are more superior than their passive counterparts in establishing between the relative ratio of reflectance index and the dry weight of tobacco treated by top-down removal, and in the evaluation of biomass. $The\;Crop\;Circle\;ACS-210^{TM}$ red was proved to have the highest efficiency of measurement, followed by $Crop\;Circle^{TM}(ACS210)$ amber and $GreenSeeker^{TM}$ red, $Crop\;Circle^{TM}$ passive, $GreenSeeker^{TM}$ green, and spectroradiometer, in descending order.

Cast Shadow Extraction of Mountainous Terrain in Satellite Imagery (위성영상에서 산악지역의 그림자 추출)

  • 손홍규;윤공현;송영선
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.309-312
    • /
    • 2004
  • In mountainous area with high relief, topography may cause cast shadows due to the blocking of direct solar radiation. Remote sensing images of these landscapes display reduced values of reflectance for shadowed areas compared to non-shadowed areas with similar surface cover characteristics. A variety of approaches are possible, though a common step in various active approaches is first to delineate the shadows using automated algorithm and digital surface model (or digital elevation model). This articles demonstrates a common confusion caused by cast shadows

  • PDF