• Title/Summary/Keyword: active-learning method

Search Result 370, Processing Time 0.027 seconds

Analysis of International Research Trends on Metaverse

  • Mina, Shim
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.453-459
    • /
    • 2022
  • This study attempted to explore the realization and research direction of a successful metaverse environment in the future by analyzing international research trends of the metaverse using topic modeling. A total of 208 papers among WoS and ScienceDirect papers using metaverse as keywords were selected, and quantitative frequency analysis and topic modeling were performed. As a result, it was confirmed that research has rapidly increased after 2022. The main keywords of the research topics were 'second', 'life', 'learning', 'reality', 'metaverse', 'virtual', 'blockchain', 'nft', 'medical', 'avatar', etc. The topic keywords 'Second life & Education' and 'Virtual Reality & Medical' accounted for a large proportion of 57%, followed by 'Blockchain & Cryptocurrency', 'Avatar & Interaction', and 'Sensing and Device'. As a result of semantic analysis, current metaverse research is focused on application and utilization, and research on underlying technologies and devices is also active. Therefore, it is necessary to identify the commonalities and differences between domestic and foreign studies, and to study the application method considering the domestic environment. In addition, new jurisprudence research is more necessary along with predicting new problems. It is expected that the results of study will provide the right research direction for domestic researchers in the era of digital transformation and contribute to the realization of a digital society.

Slope stability analysis using black widow optimization hybridized with artificial neural network

  • Hu, Huanlong;Gor, Mesut;Moayedi, Hossein;Osouli, Abdolreza;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.523-533
    • /
    • 2022
  • A novel metaheuristic search method, namely black widow optimization (BWO) is employed to increase the accuracy of slope stability analysis. The BWO is a recently-developed optimizer that supervises the training of an artificial neural network (ANN) for predicting the factor of safety (FOS) of a single-layer cohesive soil slope. The designed slope bears a loaded foundation in different distances from the crest. A sensitivity analysis is conducted based on the number of active individuals in the BWO algorithm, and it was shown that the best performance is acquired for the population size of 40. Evaluation of the results revealed that the capability of the ANN was significantly enhanced by applying the BWO. In this sense, the learning root mean square error fell down by 23.34%. Also, the correlation between the testing data rose from 0.9573 to 0.9737. Therefore, the postposed BWO-ANN can be promisingly used for the early prediction of FOS in real-world projects.

Behavior Pattern Prediction Algorithm Based on 2D Pose Estimation and LSTM from Videos (비디오 영상에서 2차원 자세 추정과 LSTM 기반의 행동 패턴 예측 알고리즘)

  • Choi, Jiho;Hwang, Gyutae;Lee, Sang Jun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.4
    • /
    • pp.191-197
    • /
    • 2022
  • This study proposes an image-based Pose Intention Network (PIN) algorithm for rehabilitation via patients' intentions. The purpose of the PIN algorithm is for enabling an active rehabilitation exercise, which is implemented by estimating the patient's motion and classifying the intention. Existing rehabilitation involves the inconvenience of attaching a sensor directly to the patient's skin. In addition, the rehabilitation device moves the patient, which is a passive rehabilitation method. Our algorithm consists of two steps. First, we estimate the user's joint position through the OpenPose algorithm, which is efficient in estimating 2D human pose in an image. Second, an intention classifier is constructed for classifying the motions into three categories, and a sequence of images including joint information is used as input. The intention network also learns correlations between joints and changes in joints over a short period of time, which can be easily used to determine the intention of the motion. To implement the proposed algorithm and conduct real-world experiments, we collected our own dataset, which is composed of videos of three classes. The network is trained using short segment clips of the video. Experimental results demonstrate that the proposed algorithm is effective for classifying intentions based on a short video clip.

Whistleblowing Intention and Organizational Ethical Culture: Analysis of Perceived Behavioral Control in Indonesia

  • TRIPERMATA, Lukita;Syamsurijal, Syamsurijal;WAHYUDI, Tertiarto;FUADAH, Luk Luk
    • The Journal of Industrial Distribution & Business
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Purpose: This study aims to find empirical evidence and clarity on the phenomenon of the direct and indirect effect of perceived behavioral control on fraud prevention through whistleblowing intention. This study also aims to understand the influence of organizational ethical culture moderating between whistleblowing intention and fraud prevention. Research design, data, methodology: The samples of this research are 236 respondents consisting of the Head of the Finance Subdivision and Head of the Reporting Planning Subdivision and the finance staff who were determined using the purposive sampling method. The data obtained were analyzed using the Structural Equation Modeling technique. Results: The study results show that perceived behavioral control positively and significantly affects whistleblowing intention. In addition, perceived behavioral control does not affect fraud prevention mediated by whistleblowing intention. Furthermore, organizational ethical culture moderates whistleblowing intention and has a positive and significant effect on fraud prevention. Conclusions: This study concludes that the phenomenon of scandal that often occurs on a television is not a habit that must be followed. It requires an active role from the community as a form of concern for whistleblowing. Futher researchers can add other construct variables, such as good corporate governance to assess the performance improvement of the organizational layers, both internally and externally

A Study on the Research Trends in Int'l Trade Using Topic modeling (토픽모델링을 활용한 무역분야 연구동향 분석)

  • Jee-Hoon Lee;Jung-Suk Kim
    • Korea Trade Review
    • /
    • v.45 no.3
    • /
    • pp.55-69
    • /
    • 2020
  • This study examines the research trends and knowledge structure of international trade studies using topic modeling method, which is one of the main methodologies of text mining. We collected and analyzed English abstracts of 1,868 papers of three Korean major journals in the area of international trade from 2003 to 2019. We used the Latent Dirichlet Allocation(LDA), an unsupervised machine learning algorithm to extract the latent topics from the large quantity of research abstracts. 20 topics are identified without any prior human judgement. The topics reveal topographical maps of research in international trade and are representative and meaningful in the sense that most of them correspond to previously established sub-topics in trade studies. Then we conducted a regression analysis on the document-topic distributions generated by LDA to identify hot and cold topics. We discovered 2 hot topics(internationalization capacity and performance of export companies, economic effect of trade) and 2 cold topics(exchange rate and current account, trade finance). Trade studies are characterized as a interdisciplinary study of three agendas(i.e. international economy, International Business, trade practice), and 20 topics identified can be grouped into these 3 agendas. From the estimated results of the study, we find that the Korean government's active pursuit of FTA and consequent necessity of capacity building in Korean export firms lie behind the popularity of topic selection by the Korean researchers in the area of int'l trade.

A Study on the Satisfaction and Improvement Plan of Fraud Prevention Education about Technical and Vocational Education and Training (직업훈련 부정 예방교육 만족도 조사와 개선방안 연구)

  • Jeong, Sun Jeong;Lee, Eun Hye;Lee, Moon Su
    • Journal of vocational education research
    • /
    • v.37 no.5
    • /
    • pp.25-53
    • /
    • 2018
  • The purpose of this study is to find out the improvement plan through the satisfaction survey of the trainees involved in vocational training fraud preventive education. In order to do this, we conducted a satisfaction survey(4,263 persons) of 5,939 people who participated in the prevention education conducted by group education or e-learning in 2017. Finally we collected 4,237 effective responses data. Descriptive statistics and the regression analysis were conducted. The finding of the study were as follows. First, the education service quality(4.42), satisfaction level(4.44), understanding level(4.44) and help level(4.45) were significantly higher than those of participants in the preventive education 4 and above. Second, e-learning participants' perceived level of education service quality, satisfaction, comprehension, and help was higher in all variables than collective education's. Third, all of the sub-factors of preventive education service quality influenced satisfaction, understanding, and help in collective education and e-learning, respectively. In the collective education, the contents of education had the greatest influence, and in e-learning, the data composition had the greatest influence. Fourth, desirable education contents were cases of fraud training(70.7%), disposition regulations(47.9%), NCS course operation instructions(32.8%) and training management best practices(32.4%). Additional requirements also included the establishment of an in-depth course, the provision of anti-fraud education content for trainees, and screen switching and system stability that can be focused on e-learning. Therefore, this study suggests that first, it is necessary to activate e-learning for prevention education more, reflecting satisfaction of e-learning is higher than that of collective education. Second, it is necessary to diversify the content of preventive education and to provide it more abundantly, because it has the biggest influence in common with the satisfaction, understanding and help level of the preventive education. Third, education content next, the factors that have a relatively big influence on satisfaction are shown as delivery method and education place in the collective education. Therefore, it is necessary to prepare education place considering the assignment of instructor and convenience. Fourth, constructing data next, the factor that have a relatively great influence on understanding and help are found to be operator support, and more active operator support activities are required in e-learning. Fifth, it is required to delivery prevention activity for trainees participating in vocational training. Sixth, it is necessary to analyze the educational need to construct the contents of preventive education more systematically.

Speech Recognition of the Korean Vowel 'ㅡ' based on Neural Network Learning of Bulk Indicators (벌크 지표의 신경망 학습에 기반한 한국어 모음 'ㅡ'의 음성 인식)

  • Lee, Jae Won
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.11
    • /
    • pp.617-624
    • /
    • 2017
  • Speech recognition is now one of the most widely used technologies in HCI. Many applications where speech recognition may be used (such as home automation, automatic speech translation, and car navigation) are now under active development. In addition, the demand for speech recognition systems in mobile environments is rapidly increasing. This paper is intended to present a method for instant recognition of the Korean vowel 'ㅡ', as a part of a Korean speech recognition system. The proposed method uses bulk indicators (which are calculated in the time domain) instead of the frequency domain and consequently, the computational cost for the recognition can be reduced. The bulk indicators representing predominant sequence patterns of the vowel 'ㅡ' are learned by neural networks and final recognition decisions are made by those trained neural networks. The results of the experiment show that the proposed method can achieve 88.7% recognition accuracy, and recognition speed of 0.74 msec per syllable.

Driver Group Clustering Technique and Risk Estimation Method for Traffic Accident Prevention

  • Tae-Wook Kim;Ji-Woong Yang;Hyeon-Jin Jung;Han-Jin Lee;Ellen J. Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.53-58
    • /
    • 2024
  • Traffic accidents are not only a threat to human lives but also pose significant societal costs. Recently, research has been conducted to address the issue of traffic accidents by predicting the risk using deep learning technology and spatiotemporal information of roads. However, while traffic accidents are influenced not only by the spatiotemporal information of roads but also by human factors, research on the latter has been relatively less active. This paper analyzes driver groups and characteristics by applying clustering techniques to a traffic accident dataset and proposes and applies a method to calculate the Risk Level for each driver group and characteristic. In this process, the preprocessing technique suggested in this paper demonstrates a higher Silhouette Score of 0.255 compared to the commonly used One-Hot Embedding & Min-Max Scaling techniques, indicating its suitability as a preprocessing method.

Content Analysis of the Teaching Support Program of the Teaching and Learning Center and Direction of the Teaching Support Platform (교수학습센터의 교수지원 프로그램 컨텐츠 분석 및 교수지원 플랫폼이 나아갈 방향)

  • Cho, Bo-Ram
    • Journal of Digital Convergence
    • /
    • v.18 no.10
    • /
    • pp.1-12
    • /
    • 2020
  • This is a study on the direction of the teaching support program contents analysis and teaching support platform of the teaching and learning center. To this end, in April 2020, a literature study was conducted, an analysis of the current status of teaching support at other universities and K universities, an analysis of professor interviews, and expert verification were conducted. The main research results are as follows. First, as a result of examining the current status of teaching support programs at 24 universities, it was confirmed that special lectures on teaching methods, class consulting, teaching method research meetings, and educational resource rooms were operated as representative programs. Second, the basic structure of the platform is composed of a lecture case sharing bulletin board to enable active exchange of opinions on teaching methods among teachers, a teaching support program application bulletin board to enable application for a teaching method program, and Edu-tech to activate the platform, and a professor support menu. Third, the contents of the teaching support platform were implemented based on the basic structure of the teaching support platform. This study analyzed the contents of the teaching support program and conducted a study to suggest the direction of the teaching support platform to discuss the direction of establishing an effective teaching support platform.

Development of Facial Expression Recognition System based on Bayesian Network using FACS and AAM (FACS와 AAM을 이용한 Bayesian Network 기반 얼굴 표정 인식 시스템 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.562-567
    • /
    • 2009
  • As a key mechanism of the human emotion interaction, Facial Expression is a powerful tools in HRI(Human Robot Interface) such as Human Computer Interface. By using a facial expression, we can bring out various reaction correspond to emotional state of user in HCI(Human Computer Interaction). Also it can infer that suitable services to supply user from service agents such as intelligent robot. In this article, We addresses the issue of expressive face modeling using an advanced active appearance model for facial emotion recognition. We consider the six universal emotional categories that are defined by Ekman. In human face, emotions are most widely represented with eyes and mouth expression. If we want to recognize the human's emotion from this facial image, we need to extract feature points such as Action Unit(AU) of Ekman. Active Appearance Model (AAM) is one of the commonly used methods for facial feature extraction and it can be applied to construct AU. Regarding the traditional AAM depends on the setting of the initial parameters of the model and this paper introduces a facial emotion recognizing method based on which is combined Advanced AAM with Bayesian Network. Firstly, we obtain the reconstructive parameters of the new gray-scale image by sample-based learning and use them to reconstruct the shape and texture of the new image and calculate the initial parameters of the AAM by the reconstructed facial model. Then reduce the distance error between the model and the target contour by adjusting the parameters of the model. Finally get the model which is matched with the facial feature outline after several iterations and use them to recognize the facial emotion by using Bayesian Network.