• Title/Summary/Keyword: active-learning method

Search Result 370, Processing Time 0.026 seconds

Image Recognition and Clustering for Virtual Reality based on Cognitive Rehabilitation Contents (가상현실 기반 인지재활 콘텐츠를 위한 영상 인식 및 군집화)

  • Choi, KwonTaeg
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1249-1257
    • /
    • 2017
  • Due to the 4th industrial revolution and an aged society, many studies are being conducted to apply virtual reality to medical field. Research on dementia is especially active. This paper proposes virtual reality based on cognitive rehabilitation contents using image recognition and clustering method to improve cognitive and physical disabilities caused by dementia. Unlike the existing cognitive rehabilitation system, this paper uses travel photos that reflect the memories of the subjects to be treated. In order to generate automated cognitive rehabilitation contents, we extract face information, food pictures, place information, and time information from photographs, and normalization is performed for clustering. And we present scenarios that can be used as cognitive rehabilitation contents using travel photos in virtual reality space.

Opposition based charged system search for parameter identification problem in a simplified Bouc-Wen model

  • Shirgir, Sina;Azar, Bahman Farahmand;Hadidi, Ali
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.493-506
    • /
    • 2020
  • In this paper, a new opposition based charged system search (CSS) is proposed to be used as a parameter identification of highly nonlinear semi-active magneto-rheological damper. By replacing the opposition particles with current solutions, the mentioned strategy is used to enhance the search space and to increase the exploration of CSS. To investigate the effectiveness of the proposed method, a nonlinear modified Bouc-Wen model of MR damper is considered to find its parameters, and compare it with those achieved from experimental model of MR damper. Also, by exploiting the sensitivity analysis and using the importance vector, the less importance parameters in the Bouc-Wen model are eliminated which makes the MR damper model simpler. Results demonstrate the new proposed algorithm (OBLCSS) has a high ability to tackle highly nonlinear problems. Based on the results of the α importance vector, a simplified model is proposed and its parameters are identified by using the presented OBLCSS algorithm. The simplified proposed model also has a high capability of estimating damper responses.

University Virtual Environment for Attention Enhancement

  • Kang, Dong-Ju;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.155-163
    • /
    • 2002
  • Attention Deficit Hyperactivity Disorder(ADHD) is a childhood syndrome characterized by short attention span. impulsiveness, and hyperactivity, which often leadㄴ to learning disabilities and various behavioral problems. For the treatment of ADHD, medication and cognitive-behavior therapy is applied in recent yearn Although psycho-stimulant medication has been widely used for many rears. current findings suggest that, as the sole treatment for ADHD, it is an inadequate form of intervention in that parents don't want their child to use drug and the effects are limited to the period in which the drugs are physiologically active. On the other hand, EEG biofeedback treatment studies for ADHD have reported promising results not only in significant reductions in hyperactive, inattentive, and disruptive behaviors, but also improvements in academic performance and IQ scores. However it is too boring for children to finish the whole treatment. The recent increase in computer usage in medicine and rehabilitation has changed the way health care is delivered. Virtual Reality technology provides specific stimuli that can be used in removing distractions and providing environments that get the subjects'attention and increasing their ability to concentrate. VR technology can hold a patient's attention for a longer period of time than other methods can, because VR is immersive, interactive and imaginal. Based on these aspects, we developed Attention Enhancement System (AES) using VR technology, EEG biofeedback, and cognitive training method for enhancing attention and made a clinical trial to people who have attention difficulty and behavioral problems.

Conceptual Pattern Matching of Time Series Data using Hidden Markov Model (은닉 마코프 모델을 이용한 시계열 데이터의 의미기반 패턴 매칭)

  • Cho, Young-Hee;Jeon, Jin-Ho;Lee, Gye-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.5
    • /
    • pp.44-51
    • /
    • 2008
  • Pattern matching and pattern searching in time series data have been active issues in a number of disciplines. This paper suggests a novel pattern matching technology which can be used in the field of stock market analysis as well as in forecasting stock market trend. First, we define conceptual patterns, and extract data forming each pattern from given time series, and then generate learning model using Hidden Markov Model. The results show that the context-based pattern matching makes the matching more accountable and the method would be effectively used in real world applications. This is because the pattern for new data sequence carries not only the matching itself but also a given context in which the data implies.

A Comparative Analysis on Units about Ratio and Rate between Korean Mathematics Textbook and MIC Textbook (우리나라 교과서와 미국 MIC 교과서의 비와 비율 관련 단원 비교.분석)

  • Park, Hee-Ja;Jeong, Eun-Sil
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.3
    • /
    • pp.769-788
    • /
    • 2010
  • This study analyzed the characteristics of units about ratio and rate between Korean mathematics textbooks and MIC of America. With bases to this, I would find the problems and suggested point of curriculums about ratio and rate in order to propose the basic materials of developing mathematic curriculum and textbook and improving the mathematic teaching method. With bases to this, Korean mathematics textbooks should be supplemented as follows. A. Develop the various problems with meaningful situation rather than the problems which can be solved with algorithms and rules. B. Develop the students' rational judgement competence with the situation that can induce the active communication. C. Develop the problem situation that need the student's activity. D. Let the students easily take the situation about ratio and rate with suggesting much visual mode and sustain their interest and positive learning attitude.

  • PDF

Self-organized Spectrum Access in Small-cell Networks with Dynamic Loads

  • Wu, Ducheng;Wu, Qihui;Xu, Yuhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.1976-1997
    • /
    • 2016
  • This paper investigates the problem of co-tier interference mitigation for dynamic small- cell networks, in which the load of each small-cell varies with the number of active associated small-cell users (SUs). Due to the fact that most small-cell base stations (SBSs) are deployed in an ad-hoc manner, the problem of reducing co-tier interference caused by dynamic loads in a distributed fashion is quite challenging. First, we propose a new distributed channel allocation method for small-cells with dynamic loads and define a dynamic interference graph. Based on this approach, we formulate the problem as a dynamic interference graph game and prove that the game is a potential game and has at least one pure strategy Nash equilibrium (NE) point. Moreover, we show that the best pure strategy NE point minimizes the expectation of the aggregate dynamic co-tier interference in the small-cell network. A distributed dynamic learning algorithm is then designed to achieve NE of the game, in which each SBS is unaware of the probability distributions of its own and other SBSs' dynamic loads. Simulation results show that the proposed approach can mitigate dynamic co-tier interference effectively and significantly outperform random channel selection.

An efficient reliability analysis strategy for low failure probability problems

  • Cao, Runan;Sun, Zhili;Wang, Jian;Guo, Fanyi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.209-218
    • /
    • 2021
  • For engineering, there are two major challenges in reliability analysis. First, to ensure the accuracy of simulation results, mechanical products are usually defined implicitly by complex numerical models that require time-consuming. Second, the mechanical products are fortunately designed with a large safety margin, which leads to a low failure probability. This paper proposes an efficient and high-precision adaptive active learning algorithm based on the Kriging surrogate model to deal with the problems with low failure probability and time-consuming numerical models. In order to solve the problem with multiple failure regions, the adaptive kernel-density estimation is introduced and improved. Meanwhile, a new criterion for selecting points based on the current Kriging model is proposed to improve the computational efficiency. The criterion for choosing the best sampling points considers not only the probability of misjudging the sign of the response value at a point by the Kriging model but also the distribution information at that point. In order to prevent the distance between the selected training points from too close, the correlation between training points is limited to avoid information redundancy and improve the computation efficiency of the algorithm. Finally, the efficiency and accuracy of the proposed method are verified compared with other algorithms through two academic examples and one engineering application.

Probabilistic analysis for face stability of tunnels in Hoek-Brown media

  • Li, T.Z.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.595-603
    • /
    • 2019
  • A modified model combining Kriging and Monte Carlo method (MC) is proposed for probabilistic estimation of tunnel face stability in this paper. In the model, a novel uniform design is adopted to train the Kriging, instead of the existing active learning function. It has advantage of avoiding addition of new training points iteratively, and greatly saves the computational time in model training. The kinematic approach of limit analysis is employed to define the deterministic computational model of face failure, in which the Hoek-Brown failure criterion is introduced to account for the nonlinear behaviors of rock mass. The trained Kriging is used as a surrogate model to perform MC with dramatic reduction of calls to actual limit state function. The parameters in Hoek-Brown failure criterion are considered as random variables in the analysis. The failure probability is estimated by direct MC to test the accuracy and efficiency of the proposed probabilistic model. The influences of uncertainty level, correlation relationship and distribution type of random variables are further discussed using the proposed approach. In summary, the probabilistic model is an accurate and economical alternative to perform probabilistic stability analysis of tunnel face excavated in spatially random Hoek- Brown media.

User-Customized News Service by use of Social Network Analysis on Artificial Intelligence & Bigdata

  • KANG, Jangmook;LEE, Sangwon
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.131-142
    • /
    • 2021
  • Recently, there has been an active service that provides customized news to news subscribers. In this study, we intend to design a customized news service system through Deep Learning-based Social Network Service (SNS) activity analysis, applying real news and avoiding fake news. In other words, the core of this study is the study of delivery methods and delivery devices to provide customized news services based on analysis of users, SNS activities. First of all, this research method consists of a total of five steps. In the first stage, social network service site access records are received from user terminals, and in the second stage, SNS sites are searched based on SNS site access records received to obtain user profile information and user SNS activity information. In step 3, the user's propensity is analyzed based on user profile information and SNS activity information, and in step 4, user-tailored news is selected through news search based on user propensity analysis results. Finally, in step 5, custom news is sent to the user terminal. This study will be of great help to news service providers to increase the number of news subscribers.

Centroid and Nearest Neighbor based Class Imbalance Reduction with Relevant Feature Selection using Ant Colony Optimization for Software Defect Prediction

  • B., Kiran Kumar;Gyani, Jayadev;Y., Bhavani;P., Ganesh Reddy;T, Nagasai Anjani Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.1-10
    • /
    • 2022
  • Nowadays software defect prediction (SDP) is most active research going on in software engineering. Early detection of defects lowers the cost of the software and also improves reliability. Machine learning techniques are widely used to create SDP models based on programming measures. The majority of defect prediction models in the literature have problems with class imbalance and high dimensionality. In this paper, we proposed Centroid and Nearest Neighbor based Class Imbalance Reduction (CNNCIR) technique that considers dataset distribution characteristics to generate symmetry between defective and non-defective records in imbalanced datasets. The proposed approach is compared with SMOTE (Synthetic Minority Oversampling Technique). The high-dimensionality problem is addressed using Ant Colony Optimization (ACO) technique by choosing relevant features. We used nine different classifiers to analyze six open-source software defect datasets from the PROMISE repository and seven performance measures are used to evaluate them. The results of the proposed CNNCIR method with ACO based feature selection reveals that it outperforms SMOTE in the majority of cases.