• Title/Summary/Keyword: active tendon control

Search Result 14, Processing Time 0.025 seconds

Optimal Active Seismic Control of Structures with Optimum Location of Active Controllers (제어기의 최적위치선정을 고려한 구조물의 최적 능동지진제어)

  • Cho, Chang-Geun;Kwon, Joon-Myoung;Park, Tae-Hoon;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.179-189
    • /
    • 2008
  • The object of this study is to develope a program with proposed numerical techniques for an optimal seismic control of structures using active tendon systems. Ricatti closed-loop algorithm has been applied to control the active tendon systems with time-delay problem. The optimal control is formulated as an optimization problem which is finding optimal weighting matrices by minimizing the quadratic performance index by SUMT. In order to find the optimal location of active tendons in structures, controllability index has been introduced. From numerical examples, the current optimal control technique with optimal location of tendons was suitable to control the seismic response of structures.

Chaotic particle swarm optimization in optimal active control of shear buildings

  • Gharebaghi, Saeed Asil;Zangooeia, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.347-357
    • /
    • 2017
  • The applications of active control is being more popular nowadays. Several control algorithms have been developed to determine optimum control force. In this paper, a Chaotic Particle Swarm Optimization (CPSO) technique, based on Logistic map, is used to compute the optimum control force of active tendon system. A chaotic exploration is used to search the solution space for optimum control force. The response control of Multi-Degree of Freedom (MDOF) shear buildings, equipped with active tendons, is introduced as an optimization problem, based on Instantaneous Optimal Active Control algorithm. Three MDOFs are simulated in this paper. Two examples out of three, which have been previously controlled using Lattice type Probabilistic Neural Network (LPNN) and Block Pulse Functions (BPFs), are taken from prior works in order to compare the efficiency of the current method. In the present study, a maximum allowable value of control force is added to the original problem. Later, a twenty-story shear building, as the third and more realistic example, is considered and controlled. Besides, the required Central Processing Unit (CPU) time of CPSO control algorithm is investigated. Although the CPU time of LPNN and BPFs methods of prior works is not available, the results show that a full state measurement is necessary, especially when there are more than three control devices. The results show that CPSO algorithm has a good performance, especially in the presence of the cut-off limit of tendon force; therefore, can widely be used in the field of optimum active control of actual buildings.

Optimization of Active Tendon Controlled Structures by Efficient Solution of LQR Control Gain (LQR 제어이득의 효율적 산정에 의한 능동텐던 구조물의 최적화)

  • Cho, Chang-Geun;Kyun, Jun-Myong;Jung, In-Kju;Park, Moon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.73-80
    • /
    • 2008
  • The objective of current study is to develop an optimization technique for the seismic actively controlled building structures using active tendon devices by an efficient solution of LQR control gain. In order to solve the active control system, the Ricatti closed-loop algorithm has been applied, and the state vector has been formulated by the transfer matrix and solved by a numerical technique of the trapezoidal rule. The time-delay problem has been also considered by phase compensation. To optimize the performance index, the ratio of the weighted matrix is the design variable, allowable story drift limits of IBC 2000 and tendon forces have been applied as restraint conditions, and the optimum control program has been developed with the algorithm of the SUMT technique. In examples of the optimization problem of eight stories shear buildings, it is evaluated that the optimum controlled building is more suitable in the control of earthquake response than the uncontrolled system and can reduce the performance index to compare with the controlled system with a constant ratio of the weighted matrix.

  • PDF

Active tendon control of suspension bridges

  • Preumont, Andre;Voltan, Matteo;Sangiovanni, Andrea;Mokrani, Bilal;Alaluf, David
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.31-52
    • /
    • 2016
  • The paper first reviews the theory of active tendon control with decentralized Integral Force Feedback (IFF) and collocated displacement actuator and force sensor; a formal proof of the formula giving the maximum achievable damping is provided for the first time. Next, the potential of the control strategy for the control of suspension bridges with active stay cables is evaluated on a numerical model of an existing footbridge; several configurations are investigated where the active cables connect the pylon to the deck or the deck to the catenary. The analysis confirms that it is possible to provide a set of targeted modes with a considerable amount of damping, reaching ${\xi}=15%$. Finally, the control strategy is demonstrated experimentally on a laboratory mock-up equipped with four control stay cables equipped with piezoelectric actuators. The experimental results confirm the excellent performance and robustness of the control system and the very good agreement with the predictions.

Active structural control via metaheuristic algorithms considering soil-structure interaction

  • Ulusoy, Serdar;Bekdas, Gebrail;Nigdeli, Sinan Melih
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.175-191
    • /
    • 2020
  • In this study, multi-story structures are actively controlled using metaheuristic algorithms. The soil conditions such as dense, normal and soft soil are considered under near-fault ground motions consisting of two types of impulsive motions called directivity effect (fault normal component) and the flint step (fault parallel component). In the active tendon-controlled structure, Proportional-Integral-Derivative (PID) type controller optimized by the proposed algorithms was used to achieve a control signal and to produce a corresponding control force. As the novelty of the study, the parameters of PID controller were determined by different metaheuristic algorithms to find the best one for seismic structures. These algorithms are flower pollination algorithm (FPA), teaching learning based optimization (TLBO) and Jaya Algorithm (JA). Furthermore, since the influence of time delay on the structural responses is an important issue for active control systems, it should be considered in the optimization process and time domain analyses. The proposed method was applied for a 15-story structural model and the feasible results were found by limiting the maximum control force for the near-fault records defined in FEMA P-695. Finally, it was determined that the active control using metaheuristic algorithms optimally reduced the structural responses and can be applied for the buildings with the soil-structure interaction (SSI).

Chattering-free sliding mode control with a fuzzy model for structural applications

  • Baghaei, Keyvan Aghabalaei;Ghaffarzadeh, Hosein;Hadigheh, S. Ali;Dias-da-Costa, Daniel
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.307-315
    • /
    • 2019
  • This paper proposes a chattering-free sliding mode control (CFSMC) method for seismically excited structures. The method is based on a fuzzy logic (FL) model applied to smooth the control force and eliminate chattering, where the switching part of the control law is replaced by an FL output. The CFSMC is robust and keeps the advantages of the conventional sliding mode control (SMC), whilst removing the chattering and avoiding the time-consuming process of generating fuzzy rule basis. The proposed method is tested on an 8-story shear frame equipped with an active tendon system. Results indicate that the new method not only can effectively enhance the seismic performance of the structural system compared to the SMC, but also ensure system stability and high accuracy with less computational cost. The CFSMC also requires less amount of energy from the active tendon system to produce the desired structural dynamic response.

Active tendon control of suspension bridges: Study on the active cables configuration

  • Tian, Zhui;Mokrani, Bilal;Alaluf, David;Jiang, Jun;Preumont, Andre
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2017
  • In a previous study, the potential of damping suspension bridges with active stay cables has been evaluated on a numerical model of a suspension bridge, and demonstrated experimentally on a laboratory mockup. In this paper, we extend our study to explore two different configurations of the active stay-cables: one classical configuration, corresponding to attaching the active stay-cables between the top of the pylons and the deck (configuration I) and, another configuration, consisting of attaching the stay-cables between the base of the pylons and the catenary (configuration II). The analysis confirmed that both configurations are effective with a slight superiority of the second configuration. The study is conducted numerically and experimentally on a suspension bridge mock-up, by considering two types of active stay-cables. The experimental results confirmed the numerical predictions, and demonstrated the effectiveness of the second configuration.

Simple Postoperative Exercise of Acute Achilles Tendon Rupture without Active Range of Motion Exercise (아킬레스건 파열 이후의 능동적인 관절 범위 운동이 없는 간단한 재활 운동 방법)

  • Jae-Kwang Hwang;Youngjoo Jung;Dong-Kyo Seo
    • Journal of Korean Foot and Ankle Society
    • /
    • v.27 no.1
    • /
    • pp.12-16
    • /
    • 2023
  • Purpose: Postoperative exercise for acute Achilles tendon rupture is important for a patient's return to daily life and sports. On the other hand, the protocol requires considerable effort to educate patients and continuous checking. This study evaluated the outcome of a new simple and delayed rehabilitation protocol after Achilles tendon rupture repair. Materials and Methods: From July 2014 to November 2020, one hundred eighty-three patients were operated on by one surgeon. The exercise protocol was classified into two methods. One group (immediate protocol, control group) started immediate full weight bearing with a 20° plantar flexion range of motion from two days postoperatively. Ankle dorsiflexion was restricted to 0°. The other group (delayed protocol, case group) started full weight bearing with a controlled ankle motion boot from two weeks postoperatively. No range of motion exercise was allowed until six weeks postoperatively. Age, sex, body mass index, ankle range of motion, muscle power, time to return to previous physical activity, functional score, and complication rate were evaluated. The results of the two groups were compared using a Mann-Whitney test. Statistical significance was set as p<0.05. Results: The range of motion, double heel rising, and one-leg standing were achieved faster in the control group (p<0.05). However, single-heel rising, repeated single-heel rising, return to previous activity (work, run, and sport), and functional scores showed no statistical difference (p>0.05). Conclusion: Simple and delayed postoperative rehabilitation of acute Achilles tendon rupture without active range of motion exercises showed satisfactory functional results and a low complication rate.

Design of Semi-Active Tendon for Vibration Control of Large Structures (대형 구조물의 진동제어를 위한 반능동형 댐퍼의 설계)

  • Kim, Saang-Bum;Yun, Chung-Bang;Gu, Ja-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.282-286
    • /
    • 2000
  • In this paper, magneto-rheological(MR) damper is studied for vibration control of large infra structures under earthquake. Generally, active control devices need a large control force and a high power supply system to reduce the vibration effectively. Large and miss tuned control force may induce the dangerous situation such that the generated large control force acts to amplify the structural vibration. Recently, to overcome the weaknesses of the active control, the semi-active control method is suggested by many researchers. Semi-active control uses the passive control device of which the characteristics can be modified. Control force of the semi-active device is not generated from the actuator with power supply. It is generated as a dynamic reaction force of the device same as in the passive control case, so the control system is inherently stable and robust. Unlike the case of passive control, control force of semi-active control is adjusted depending on the measured response of the structure, so the vibration can be reduced more effectively against various unknown environmental loads. Magneto-rheological(MR) damper is one of the semi-active devices. Dynamic characteristics of the MR material can be changed by applying the magnetic fields. So the control of MR damper needs only small power. Response time of MR to the input voltage is very short, so the high performance control is possible. MR damper has a high force capacity so it is adequate to the vibration control of large infra structure. Because MR damper has a nonlinear property, normal control method used in active control may not be effective. Clipped optimal control, modified bang-bang control etc. have been suggested to MR damper by many researchers. In this study, sliding mode fuzzy control(SMFC) is applied to MR damper. Genetic algorithm is used for the controller tuning. To verify the applicability of MR damper and suggested algorithm, numerical simulation on the aseismic control is carried out. Simulation model is three-story building structure, which was used in the paper of Dyke, et al. The control performance is compared with clipped optimal control. The present results indicate that the SMFC algorithm can reduce the earthquake-induced vibration very effectively.

  • PDF

Numerical and experimental research on actuator forces in toggled active vibration control system (Part I: Numerical)

  • Mirfakhraei, Seyyed Farhad;Ahmadi, Hamid Reza;Chan, Ricky
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.229-240
    • /
    • 2020
  • In this research, toggled actuator forces were examined. For achieving to this object, an actuator was installed in a toggle pattern in a S.D.O.F frame and actuator forces were investigated thru a numerical analysis process. Within past twenty years, researchers tried to use strong bracing systems as well as huge dampers to stabilize tall buildings during intensive earthquakes. Eventually, utilizing of active control systems containing actuators to counter massive excitations in structures was emerged. However, the more powerful earthquake excitations, the more robust actuators were required to be installed in the system. Subsequently, the latter process made disadvantage to the active control system due to very high price of the robust actuators as well as their large demands for electricity. Therefore, through a numerical process (Part I), influence of toggled actuator pattern was investigated. The algorithm used in the system was LQR and ATmega328 was selected as a control platform. For comparison, active tendon control system was chosen. The final results show clearly that using the toggle pattern mitigates the required actuator forces enormously leading to deploy much lighter actuators.