• 제목/요약/키워드: active shape control

검색결과 166건 처리시간 0.022초

Active shape change of an SMA hybrid composite plate

  • Daghia, Federica;Inman, Daniel J.;Ubertini, Francesco;Viola, Erasmo
    • Smart Structures and Systems
    • /
    • 제6권2호
    • /
    • pp.91-100
    • /
    • 2010
  • An experimental study was carried out to investigate the shape control of plates via embedded shape memory alloy (SMA) wires. An extensive body of literature proposes the use of SMA wires to actively modify the shape or stiffness of a structure; in most cases, however, the study focuses on modeling and little experimental data is available. In this work, a simple proof of concept specimen was built by attaching four prestrained SMA wires to one side of a carbon fiber laminate plate strip. The specimen was clamped at one end and tested in an environmental chamber, measuring the tip displacement and the SMA temperature. At heating, actuation of the SMA wires bends the plate; at cooling deformation is partially recovered. The specimen was actuated a few times between two fixed temperatures $T_c$ and $T_h$, whereas in the last actuation a temperature $T_f$ > $T_h$ was reached. Contrary to most model predictions, in the first actuation the transformation temperatures are significantly higher than in the following cycles, which are stable. Moreover, if the temperature $T_h$ is exceeded, two separate actuations occur during heating: the first follows the path of the stable cycles; the second, starting at $T_h$, is similar to the first cycle. An interpretation of the phenomenon is given using some differential scanning calorimeter (DSC) measurements. The observed behavior emphasizes the need to build a more comprehensive constitutive model able to include these effects.

저주파 대역의 소음 평가 지수 개선을 위한 창문형 능동 소음 제어기 (An active noise control window system to reduce noise rating in low frequency band)

  • 오원근
    • 한국음향학회지
    • /
    • 제37권5호
    • /
    • pp.331-337
    • /
    • 2018
  • 본 논문에서는 창문형 능동소음제어(Active Noise Control, ANC)의 잔류 소음의 평가 기준으로 실내소음 평가에서 사용하는 NR(Noise Rating)을 적용하고 이 값의 최소화를 위한 능동소음제어기에 대해서 연구하였다. 이를 위해 Filtered-E LMS(Least Mean Square) 알고리즘을 사용하여 사용자가 설정한 유효 동작 주파수 대역 내에서 NR값을 줄이는 노이즈 쉐이핑(noise shaping) 필터의 형상을 제안하였다. 제안한 필터의 유용성은 시뮬레이션을 통해 검증하였으며, 기존의 심리음향 ANC에서 사용된 필터들과 비교했을 때 잔류 소음의 NR값이 더 낮아지는 것을 보였다.

굴 껍데기에서 개미산으로 추출한 칼슘화합물과 활성제의 수관살포가 사과 '후지' 과실의 칼슘농도, 과피 형태 및 품질에 미치는 영향 (Effects of Tree-spray of Calcium Formate Compound Extracted from Oyster Shell and Active Agent on the Calcium Concentration, Fruit Skin Shape, and Quality of 'Fuji' Apple Fruit)

  • 문병우;강인규
    • 생물환경조절학회지
    • /
    • 제16권1호
    • /
    • pp.21-26
    • /
    • 2007
  • 본 연구는 굴 껍데기로 제조한 개미산 칼슘화합물에 몇 가지 활성제를 첨가한 용액 수관살포가 사과 '후지' 과실의 칼슘농도, 과점의 발육 및 품질에 미치는 영향을 구명코자 실시하였다. 굴 껍데기로부터 추출한 칼슘 화합물(Os-CaF, $52.4mg{\cdot}kg^{-1}$)을 수관살포하였을 때 조직으로의 칼슘전이 효과는 무처리에 비하여 잎, 과피 및 과육에서 현저한 증가를 보였다. 그리고 Os-CaF에 활성제를 첨가하여 살포하였을 때 '후지' 과실의 칼슘함량은 증가되었다. 특히, 잎에서는 ascorbic acid, polyvinyl alcohol을, 과피에서는 Ag-colloidal, polyvinyl alcohol을, 과육에서는 ascorbic acid, Ag-colloidal, polyvinyl alcohol을 첨가한 칼슘화합물이 칼슘 흡수량을 현저히 증가시켰다. 칼슘화합물의 농도 및 활성제 종류에 따른 과실품질(과중, 경도, 가용성고형물, 산 함량, 과피색)은 차이가 없었다.

Control-structure interaction in piezoelectric deformable mirrors for adaptive optics

  • Wang, Kainan;Alaluf, David;Mokrani, Bilal;Preumont, Andre
    • Smart Structures and Systems
    • /
    • 제21권6호
    • /
    • pp.777-791
    • /
    • 2018
  • This paper discusses the shape control of deformable mirrors for Adaptive Optics in the dynamic range. The phenomenon of control-structure interaction appears when the mirror becomes large, lowering the natural frequencies $f_i$, and the control bandwidth $f_c$ increases to improve the performance, so that the condition $f_c{\ll}f_i$ is no longer satisfied. In this case, the control system tends to amplify the response of the flexible modes and the system may become unstable. The main parameters controlling the phenomenon are the frequency ratio $f_c/f_i$ and the structural damping ${\zeta}$. Robustness tests are developed which allow to evaluate a lower bound of the stability margin. Various passive and active strategies for damping augmentation are proposed and tested in simulation.

SMA-based devices: insight across recent proposals toward civil engineering applications

  • Casciati, Sara
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.111-125
    • /
    • 2019
  • Metallic shape memory alloys present fascinating physical properties such as their super-elastic behavior in austenite phase, which can be exploited for providing a structure with both a self-centering capability and an increased ductility. More or less accurate numerical models have been introduced to model their behavior along the last 25 years. This is the reason for which the literature is rich of suggestions/proposals on how to implement this material in devices for passive and semi-active control. Nevertheless, the thermo-mechanical coupling characterizing the first-order martensite phase transformation process results in several macroscopic features affecting the alloy performance. In particular, the effects of day-night and winter-summer temperature excursions require special attention. This aspect might imply that the deployment of some devices should be restricted to indoor solutions. A further aspect is the dependence of the behavior from the geometry one adopts. Two fundamental lacks of symmetry should also be carefully considered when implementing a SMA-based application: the behavior in tension is different from that in compression, and the heating is easy and fast whereas the cooling is not. This manuscript focuses on the passive devices recently proposed in the literature for civil engineering applications. Based on the challenges above identified, their actual feasibility is investigated in detail and their long term performance is discussed with reference to their fatigue life. A few available semi-active solutions are also considered.

Active shape control of a cantilever by resistively interconnected piezoelectric patches

  • Schoeftner, J.;Buchberger, G.
    • Smart Structures and Systems
    • /
    • 제12권5호
    • /
    • pp.501-521
    • /
    • 2013
  • This paper is concerned with static and dynamic shape control of a laminated Bernoulli-Euler beam hosting a uniformly distributed array of resistively interconnected piezoelectric patches. We present an analytical one-dimensional model for a laminated piezoelectric beam with material discontinuities within the framework of Bernoulli-Euler and extent the model by a network of resistors which are connected to several piezoelectric patch actuators. The voltage of only one piezoelectric patch is prescribed: we answer the question how to design the interconnected resistive electric network in order to annihilate lateral vibrations of a cantilever. As a practical example, a cantilever with eight patch actuators under the influence of a tip-force is studied. It is found that the deflection at eight arbitrary points along the beam axis may be controlled independently, if the local action of the piezoelectric patches is equal in magnitude, but opposite in sign, to the external load. This is achieved by the proper design of the resistive network and a suitable choice of the input voltage signal. The validity of our method is exact in the static case for a Bernoulli-Euler beam, but it also gives satisfactory results at higher frequencies and for transient excitations. As long as a certain non-dimensional parameter, involving the number of the piezoelectric patches, the sum of the resistances in the electric network and the excitation frequency, is small, the proposed shape control method is approximately fulfilled for dynamic load excitations. We evaluate the feasibility of the proposed shape control method with a more refined model, by comparing the results of our one-dimensional calculations based on the extended Bernoulli-Euler equations to three-dimensional electromechanically coupled finite element results in ANSYS 12.0. The results with the simple Bernoulli-Euler model agree well with the three-dimensional finite element results.

정상체중 여고생들의 체중조절행위와 관련된 요인에 관한 연구 (Factors Associated with Weight Control Behaviors Among High School females with Normal Body Weight)

  • 김옥수;윤희상
    • 대한간호학회지
    • /
    • 제30권2호
    • /
    • pp.391-401
    • /
    • 2000
  • This descriptive study was designed to identify the factors associated with weight control behaviors among 273 high school girls with normal body weight. The objectives of the study were ⅰ) to evaluate subjective obesity and satisfaction with the body shape, ⅱ) to describe the weight control behaviors and the motivation, ⅲ) to reveal the relationships between the weight control behaviors and BMI (Body Mass Index), iv) to investigate the relationships between the weight control behaviors and subjective obesity and satisfaction with the body shape, and v) to investigate the relationships between the weight control behaviors and family support. The results showed that 62.6% of the adolescent girls with normal weight perceived that they were fatty and 9.9% thought they were obese. Seventy-five percent of them were not satisfied with their body shape. Eighty percent of the participants reported the main motivation of weight control was to have an attractive appearance. In this study, self-reported weight control methods included dieting (64.8%, skipping or reducing meals), exercise (36.6%), and special dieting (20.1%) such as eating an increased amount of juice or vegetables. It was shown that the subjects who were not satisfied with their body shape and perceived themselves as fatty or obese were active in exercise, diet, and other special diets. Subjects who were on diets and special diets had a higher level of BMI than who were not on diet and special diet. Subjects who exercise had a lower level of BMI than who did not exercised. Family support was significantly related to exercise behavior. The research suggested that there is a increasing responsibility for school nurse to instruct on the body shape and weight control behaviors through health education and consultation. Also, the results suggested that it is important to develop proper diet and exercise methods for adolescents girls to maintain their weight and health.

  • PDF

Vibration control of small horizontal axis wind turbine blade with shape memory alloy

  • Mouleeswaran, Senthil Kumar;Mani, Yuvaraja;Keerthivasan, P.;Veeraragu, Jagadeesh
    • Smart Structures and Systems
    • /
    • 제21권3호
    • /
    • pp.257-262
    • /
    • 2018
  • Vibrational problems in the domestic Small Horizontal Axis Wind Turbines (SHAWT) are due to flap wise vibrations caused by varying wind velocities acting perpendicular to its blade surface. It has been reported that monitoring the structural health of the turbine blades requires special attention as they are key elements of a wind power generation, and account for 15-20% of the total turbine cost. If this vibration problem is taken care, the SHAWT can be made as commercial success. In this work, Shape Memory Alloy (SMA) wires made of Nitinol (Ni-Ti) alloys are embedded into the Glass Fibre Reinforced Polymer (GFRP) wind turbine blade in order to reduce the flapwise vibrations. Experimental study of Nitinol (Ni-Ti) wire characteristics has been done and relationship between different parameters like current, displacement, time and temperature has been established. When the wind turbine blades are subjected to varying wind velocity, flapwise vibration occurs which has to be controlled continuously, otherwise the blade will be damaged due to the resonance. Therefore, in order to control these flapwise vibrations actively, a non-linear current controller unit was developed and fabricated, which provides actuation force required for active vibration control in smart blade. Experimental analysis was performed on conventional GFRP and smart blade, depicted a 20% increase in natural frequency and 20% reduction in amplitude of vibration. With addition of active vibration control unit, the smart blade showed 61% reduction in amplitude of vibration.

구간분할 바이너리 제어기반 SMA 구동에 의한 로봇핸드의 운동 메커니즘에 관한 연구 (A Study on Driving Mechanism of Robot Hand Driven by SMA based on Segmented Binary Control)

  • 정상화;박준호;차경래;류신호;김광호
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.14-20
    • /
    • 2006
  • In recent year, as the robot technology is developed, the researches on the artificial muscle actuator that enables robot to move dexterously like biological organ become active. Actuators are key technologies underpinning robotics. Breakthroughs in actuator technology, particular in terms of power-to-weight ratio, or energy-density, will have significant impacts upon the design and control of robotic system. In this paper, a new approach to design and control of shape memory alloy(SMA) actuator is presented to drive the robot hand. SMA wire is divided into many segments and their thermal states of the SMA are controlled individually in a binary manner. This control manner will reduce the hysteresis that the SMA material has and it becomes the fundamental technology to develop the anthropomorphic robot hand. In this paper, the mechanism In the digital step motor of the shape memory alloy that is driven by the segmented binary control, which is a new control technique, is studied. This SMA digital step actuator applies for the robot hand and the driving mechanism of the robot hand is investigated.