• Title/Summary/Keyword: active shape control

Search Result 166, Processing Time 0.025 seconds

A Study on Development and Control of Micro Active Catheter Actuator (초소형 내시경 작동기의 개발과 제어에 관한 연구)

  • Lee, Jang-Moo;Kim, Jong-Hyun;Lee, Sang-Won;Park, Jun-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.15-22
    • /
    • 1999
  • This paper demonstrates the feasibility of Shape Memory Alloy (SMA) actuators in controlling the motion of micro active catheter. The dynamic behavior of SMA is obtained by several experiments for the design of the controller. With the control parameters obtained in experiments, temperature feedback control algorithm is proposed and realized. The prototype of micro active catheter is fabricated, and its control performance which uses the designed controller is investigated. The results obtained show the potential of the SMA as viable means for actuating the micro active catheter.

  • PDF

Simulation of an Active Catheter Actuator Using Shape Memory Alloy (형상기억합금을 이요한 능동내시경 작동기의 시뮬레이션)

  • 권대규;윤여흥;유기호;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.72-75
    • /
    • 2000
  • This paper presents a simulation study on the description of the motion and the control of an active catheter actuator with multi-link structure actuated by Shape Memory Alloy(SMA). The model of an active catheter adopted in this paper has 3 links, and the individual links are composed of 3 micro coils of SMA for the omni-directional motion. In order to analyze the motions of multi-link structure, 3-dimensional kinematics description is presented. Also, the motion control of the end point of an active catheter using simple Neural Network is shown based on GUI(Graphic User Interface) system.

  • PDF

Active Shape Control of Composite Beam Using Shape Memory Alloy Actuators (형상기억합금 작동기를 이용한 복합재 보의 능동 형상 제어)

  • Yang, Seung-Man;Roh, Jin-Ho;Han, Jae-Hung;Lee, In
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.18-24
    • /
    • 2004
  • In this paper, active shape control of composite structures actuated by shape memory alloy (SMA) wires is presented. The thermo-mechanical behaviors of SMA wires were experimentally measured. Hybrid composite structures were established by attaching SMA actuators on the surfaces of graphite/epoxy composite beams using bolt-joint connectors. SMA actuators were activated by phase transformation, which induced by temperature rising over austenite finish temperature. In this paper, electrical resistive heating was applied to the hybrid composite structures to activate the SMA actuators. For (aster and more accurate shape/deflection control of the hybrid composite structure, PID feedback controller was designed from numerical simulations and experimentally applied to the SMA actuators.

A Study on Multi-Vehicle Control of Electro Active Polymer Actuator based on Embedded System using Adaptive Fuzzy Controller (Adaptive Fuzzy 제어기를 이용한 Embedded 시스템 기반의 기능성 고분자 구동체의 이중제어에 관한 연구)

  • 김태형;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.307-310
    • /
    • 1997
  • In case of environment requiring safety such as human body and requiring flexible shape, a conventional mechanical actuator system does not satisfy requirement. Therefore, in order to solve this problem, a research of various smart material such as EAP (Electro Active Polymer), EAC (Electro Active Ceramic) and SMA (Shape Memory Alloy) is in progress. Recently, the highest preferring material among various smart material is EP (Electrostictive Polymer), because it has very fast response time, poerful force and large displacement. The previous researches have been studied properties of polymer and simple control, but present researches are studied a polymer actuator. An EP (Electostrictive Polymer) actuator has properties which change variably as shape and environmental condition. Therefore, in order to coincide with a user's purpose, it is important not only to decide a shape of actuator and mechanical design but also to investigate a efficient controller. In this paper, we constructed the control logic with an adaptive fuvy algorithm which depends on the physical properties of EP that has a dielectric constant depending on time.

  • PDF

Active and Morphing Aerospace Structures-A Synthesis between Advanced Materials, Structures and Mechanisms

  • Baier, Horst;Datashvili, Leri
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.225-240
    • /
    • 2011
  • Active and shape morphing aerospace structures are discussed with a focus on activities aimed at practical implementation. In active structures applications range from dynamic load alleviation in aircraft and spacecraft up to static and dynamic shape control. In contrast, shape morphing means strong shape variation according to different mission status and needs, aiming to enhance functionality and performance over wide flight and mission regimes. The interaction of required flexible materials with the morphing structure and the actuating mechanisms is specifically addressed together with approaches in design and simulation.

Cantilever형 내시경 작동기의 진동과 제어의 해석

  • 박준형;김종현;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.761-764
    • /
    • 1995
  • This paper demonstrates the feasibility of utilizing Shape Memory Alloy(SMA) actuators in controlling the motion of micro active catherer. The dynamic behavior of SMA is obtained by several experiments for the design of the controller. Two different type of structures which realize catheter are proposed. Each prototype of micro active catherer is fabricated, and its control performance which used the designed controller is investigated. The results obtained show the potential of the SMA as viable means for actuating the micro active catheter.

  • PDF

Mobile Robot Control using Hand Shape Recognition (손 모양 인식을 이용한 모바일 로봇제어)

  • Kim, Young-Rae;Kim, Eun-Yi;Chang, Jae-Sik;Park, Se-Hyun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.4
    • /
    • pp.34-40
    • /
    • 2008
  • This paper presents a vision based walking robot control system using hand shape recognition. To recognize hand shapes, the accurate hand boundary needs to be tracked in image obtained from moving camera. For this, we use an active contour model-based tracking approach with mean shift which reduces dependency of the active contour model to location of initial curve. The proposed system is composed of four modules: a hand detector, a hand tracker, a hand shape recognizer and a robot controller. The hand detector detects a skin color region, which has a specific shape, as hand in an image. Then, the hand tracking is performed using an active contour model with mean shift. Thereafter the hand shape recognition is performed using Hue moments. To assess the validity of the proposed system we tested the proposed system to a walking robot, RCB-1. The experimental results show the effectiveness of the proposed system.

A Study on Multi-Vehicle Control of Electro Active Polymer Actuator based on Embedded System using Adaptive Fuzzy Controller (Adaptive Fuzzy 제어기를 이용한 Embedded 시스템 기반의 기능성 고분자 구동체 다중제어에 관한 연구)

  • 김태형;김훈모
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.94-103
    • /
    • 2003
  • In case of environment requiring safety such as human body and requiring flexible shape, a conventional mechanical actuator system does not satisfy requirements. Therefore, in order to solve these problems. a research of various smart material such as EAP (Electro Active Polymer), EAC (Electro Active Ceramic) and SMA (Shape Memory Alloy) is in progress. Recently, the highest preferring material among various smart material is EP (Electrostictive Polymer), because it has very fast response time, powerful force and large displacement. The previous researches have been studied properties of polymer and simple control, but present researches are studied a polymer actuator. An EP (Electostrictive Polymer) actuator has properties which change variably ils shape and environmental condition. Therefore, in order to coincide with a user's purpose, it is important not only to decide a shape of actuator and mechanical design but also to investigate a efficient controller. In this paper, we constructed the control logic with an adaptive fuzzy algorithm which depends on the physical properties of EP that has a dielectric constant depending on time. It caused for a sub-actuator to operate at the same time that a sub-actuator system operation increase with a functional improvement and control efficiency improvement in each actuator, hence it becomes very important to manage it effectively and to control the sub-system which Is operated effectively. There is a limitation on the management of Main-host system which has multiple sub-system, hence it brings out the Multi-Vehicle Control process that disperse the task efficiently. Controlling the multi-dispersion system efficiently, it needs the research of Main-host system's scheduling, data interchange between sub-actuators, data interchange between Main-host system and sub-actuator system, and data communication process. Therefore in this papers, we compared the fuzzy controller with the adaptive fuzzy controller. also, we applied the scheduling method for efficient multi-control in EP Actuator and the algorithm with interchanging data, protocol design.

The future role of smart structure systems in modern aircraft

  • Becker, J.;Luber, W.;Simpson, J.;Dittrich, K.
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.159-184
    • /
    • 2005
  • The paper intends to summarize some guidelines for future smart structure system application in military aircraft. This preview of system integration is based upon a review on approximately one and a half decades of application oriented aerospace related smart structures research. Achievements in the area of structural health monitoring, adaptive shape, adaptive load bearing devices and active vibration control have been reached, potentials have been identified, several feasibility studies have been performed and some smart technologies have been already implemented. However the realization of anticipated visions and previously initial timescales announced have been rather too optimistic. The current development shall be based on a more realistic basis including more emphasis on fundamental aircraft strength, stiffness, static and dynamic load and stability requirements of aircraft and interdisciplinary integration requirements and improvements of integrated actors, actuator systems and control systems including micro controllers.

Active Vibration Control of a Flexible Cantilever Beam Using SMA Actuators (SMA 작동기를 이용한 유연외팔보의 능동진동제어)

  • Choi, S.B.;Cheong, C.C.;Hwang, I.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.167-174
    • /
    • 1995
  • This paper experimentally demonstrates the feasibility of using shape memory alloy(SMA) actuators in controlling structural vibrations of a flexible cantilevered beam. The dynamic characteristics of the SMA actuator are identified and integrated with the beam dynamics. Three types of control schemes; constant amplitude controller(CAC), proportional amplitude controller (PAC) and sliding mode controller(SMC) are designed. The CAC and PAC are determined on the basis of physical phenomenon of the SMA actuator, while teh SMC is formulated in a mathematical manner. The proposed controllers are implemented and evaluated at various operating condirions by investigating the control level of suppression in transient vibration.

  • PDF