• 제목/요약/키워드: active pharmaceutical ingredient

검색결과 60건 처리시간 0.028초

페노피브레이트 유연물질 표준품 대체시험법 개발 (Development of an Alternative Analytical Method without Related Substance Reference Standards for Fenofibrate in Korean Pharmacopoeia)

  • 김정현;김민영;권은경;이광문;최돈웅
    • 약학회지
    • /
    • 제59권3호
    • /
    • pp.98-106
    • /
    • 2015
  • Analytical method for related substances can be categorized into two methods depending on the necessity of reference standard (RS). The analytical method of related substances with RS is fast and accurate, but it's very expensive and technically difficult to synthesize RS due to their complicated structure. Another method is using relative retention time (RRT) and relative response factor (RRF) which are already validated with RS. Validation of this method is not easy and time consuming, but once it has been developed, it can save cost and time. In this study, we developed the analytical method for related substances of fenofibrate using RRT and RRF. We validated the method by evaluating specificity, linearity, accuracy and precision according to the "Manual for Guideline Application for Validation of Analytical Procedures" of MFDS. Also, we calculated RRT and RRF between fenofibrate and fenofibrate related substances. The results of this study showed high specificity for fenofibrate and fenofibrate related substances. Correlation coefficient(r) of all substances were more than 0.99, and the recovery of fenofibrate, fenofibrate related substance I, II and III were 99.44%, 100.84%, 99.14% and 101.58%, respectively. Precision of fenofibrate and its related substances were ranged between RSD 0.29% and 0.93%. Quantification limits of fenofibrate, fenofibrate related substance I, II and III were determined to be $0.03{\mu}g/ml$, $0.05{\mu}g/ml$, $0.04{\mu}g/ml$ and $0.02{\mu}g/ml$, respectively by confirming signal to noise ratio of each chromatogram. The RRT for fenofibrate related substance I, II and III were determined to be 0.35, 0.41 and 1.34, respectively. Also, the RRF for fenofibrate related substance I, II and III were determined to be 1.28, 0.98 and 0.79, respectively. The developed method was applied to determine contents for fenofibrate related substances in commercial fenofibrate (active pharmaceutical ingredient). As a result, developed analytical methods of related substances will be used for revising the monograph of fenofibrate in Korean Pharmacopoeia revision and contribute quality control of drugs by improving cost and time consuming problem of RS.

A novel protocol for batch-separating gintonin-enriched, polysaccharide-enriched, and crude ginsenoside-containing fractions from Panax ginseng

  • Rami Lee;Han-Sung Cho;Ji-Hun Kim;Hee-Jung Cho;Sun-Hye Choi;Sung-Hee Hwang;Hyewon Rhim;Ik-Hyun Cho;Man-Hee Rhee;Do-Geun Kim;Hyoung-Chun Kim;Seung-Yeol Nah
    • Journal of Ginseng Research
    • /
    • 제47권3호
    • /
    • pp.366-375
    • /
    • 2023
  • Background: Ginseng contains three active components: ginsenosides, gintonin, and polysaccharides. After the separation of 1 of the 3 ingredient fractions, other fractions are usually discarded as waste. In this study, we developed a simple and effective method, called the ginpolin protocol, to separate gintonin-enriched fraction (GEF), ginseng polysaccharide fraction (GPF), and crude ginseng saponin fraction (cGSF). Methods: Dried ginseng (1 kg) was extracted using 70% ethanol (EtOH). The extract was water fractionated to obtain a water-insoluble precipitate (GEF). The upper layer after GEF separation was precipitated with 80% EtOH for GPF preparation, and the remaining upper layer was vacuum dried to obtain cGSF. Results: The yields of GEF, GPF, and cGSF were 14.8, 54.2, and 185.3 g, respectively, from 333 g EtOH extract. We quantified the active ingredients of 3 fractions: L-arginine, galacturonic acid, ginsenosides, glucuronic acid, lysophosphatidic acid (LPA), phosphatidic acid (PA), and polyphenols. The order of the LPA, PA, and polyphenol content was GEF > cGSF > GPF. The order of L-arginine and galacturonic acid was GPF >> GEF = cGSF. Interestingly, GEF contained a high amount of ginsenoside Rb1, whereas cGSF contained more ginsenoside Rg1. GEF and cGSF, but not GPF, induced intracellular [Ca2+]i transient with antiplatelet activity. The order of antioxidant activity was GPF > GEF = cGSF. Immunological activities (related to nitric oxide production, phagocytosis, and IL-6 and TNF-α release) were, in order, GPF > GEF = cGSF. The neuroprotective ability (against reactive oxygen species) order was GEF > cGSP > GPF. Conclusion: We developed a novel ginpolin protocol to isolate 3 fractions in batches and determined that each fraction has distinct biological effects.

미녹시딜과 다이아미노피리미딘옥사이드 성분을 함유하는 니오좀 제형의 물성 및 피부투과 (Physical Properties and Skin Penetration of Niosome Formulations Containing Minoxidil and Diaminopyrimidine Oxide)

  • 김보경;김원형;윤경섭
    • 대한화장품학회지
    • /
    • 제49권2호
    • /
    • pp.127-139
    • /
    • 2023
  • 본 연구에서는 의약품 원료로 잘 알려진 minoxidil과 화장품 원료인 diaminopyrimidine oxide (DAO) 활성성분으로 사용하여 니오좀(niosome)의 물성평가와 더불어 인공피부에 대한 경피투과율을 비교하였다. 나노입자의 니오좀을 제조하기 위해 고압유화(high pressure homogenization) 방법을 이용하였으며 제타사이저(zetasizer)로 물성평가를 진행하였다. 활성성분을 포함한 니오좀의 입자크기는 HLB에 따라 평균 99 ~ 123 nm, 제타전위(zeta potential)는 -60 ~ -81 mV의 범위로 측정되었다. DSC (differential scanning colorimetry)를 통해 결정성 성분인 minoxidil이 니오좀 내에 무결정 상태로 균일하게 용해되어 있음을 확인하였다. 경피투과량을 확인 및 비교하기 위해 in vitro Franz diffusion cell 방법으로 측정하였으며, 니오좀 제형이 대조군인겔 제형보다 minoxidil의 경우 3.4배, DAO의 경우 11.1배 높은 투과율을 보였다. 또한 minoxidil과 DAO 니오좀의 경피투과 비교 시 유사한 경향을 보였으며, 상대적으로 DAO의 투과량이 많았다. HLB 값을 달리한 니오좀 제형을 Cryo-TEM을 이용하여 형상을 관찰하였으며, 모두 소포체가 형성되었으며 SUV (small unilamella vesicle)와 LUV (large unilamella vesicle)의 중간 형태임을 확인하였다. 본 연구를 통하여 탈모에 효과적인 약물인 minoxidil과 화장품 원료인 DAO 성분을 니오좀 제형에 캡슐화시킴으로써 효과적으로 피부에의 전달을 기대할 수 있다.

분무건조와 용매증발을 이용한 Kollidon VA 64에 포접된 아세클로페낙의 개선된 용출 거동 (Improved Dissolution Behavior of Aceclofenac Loadings with Kollidon VA 64 Using Spray Drying and Rotary Evaporation Process)

  • 양재원;박진영;이천중;김혜민;이현구;장나금;고현아;조선아;양대혁;강길선
    • 폴리머
    • /
    • 제39권1호
    • /
    • pp.6-12
    • /
    • 2015
  • 난용성 약물인 아세클로페낙의 용해도를 개선하기 위해 약물과 고분자의 다른 비율을 사용하여 분무건조와 용매증발의 방법으로 Kollidon VA 64의 고체분산체를 제조하였다. 아세클로페낙을 포접하는 고체분산체의 형태학적, 물리화학적 분석을 하기 위해, 전자주사현미경(SEM), 푸리에변환 적외선분광법(FTIR), 시차주사 열량측정법(DSC) 등이 사용되었다. 포접률과 인공장액에서의 용출 거동은 HPLC를 사용하여 측정하였고, 비교를 위해 원약물과 시판제 Airtal$^{(R)}$이 사용되었다. 이것은 두 가지 방법에 따라 개선된 용출 거동을 나타내었다.

첨가물에 의한 봉독의 안정화 및 안전성 (Stability and Safety of Bee Venom with and without Additives)

  • 배영현;이종환;김해솔;김호선;서창용;김노현;이진호;하인혁;김미령;정화진;이인희;김민정;김은지;이재웅
    • Journal of Acupuncture Research
    • /
    • 제32권3호
    • /
    • pp.127-133
    • /
    • 2015
  • Objectives : Previous studies have shown that the amount of melittin, the main active ingredient in bee venom pharmacopuncture, tends to decrease substantially with time during pharmacopuncture manufacture. This study aimed to assess whether the stability of bee venom pharmacopuncture improved with pharmacopuncture additives. Methods : Components were measured using high performance liquid chromatography. Acute toxicity and antigenicity tests by subcutaneous and venous routes were conducted at Korea Pharmaceutical Test & Research Institute and mortality, adverse reactions, and body weight changes were assessed. Results : Stability tests using additives revealed that bee venom without additives was most stable. Bee venom pharmacopuncture without additives was further tested for toxicity in subcutaneous and venous administration in mice and no changes pertaining to toxicity were found over the testing period. Conclusions : Bee venom pharmacopuncture without additives was found to be most stable, and further, it did not show toxicity or antigenicity in subcutaneous and venous administration in mice.

사포닌 전환 활성 Stenotrophomonas rhizopilae Strain GFC09 균주의 분리 동정 및 전환 사포닌의 주름 개선 효과 (Isolation of Stenotrophomonas rhizopilae Strain GFC09 with Ginsenoside Converting Activity and Anti-wrinkle Effects of Converted Ginsenosides)

  • 민진우;김혜진;주광식;강희철
    • 대한화장품학회지
    • /
    • 제41권4호
    • /
    • pp.375-382
    • /
    • 2015
  • 진세노사이드(인삼 사포닌)는 인삼의 대표적 약리성분 중의 하나로 생물학적 활성을 가진 배당체 화합물이다. 이들 사포닌은 가수분해 되어 저분자화 되었을 때, 항주름 및 항산화, 항암 등에 높은 약리효능효과를 나타낸다. 본 연구에서는 인삼 esculin 배지를 활용하여 ${\beta}$-glucosidase 활성을 가진 균주를 분리하였고 인삼 사포닌 전환을 미생물을 이용하여 수행하였다. 본 균주들을 16S rRNA sequencing을 통하여 동정하여 본 결과 Stenotrophomonas rhizopilae strain GFC09로 확인되였다. 균주의 최적 활성 조건을 결정하기 위해 조효소 1 mM와 인삼사포닌 $Rb_1$과 함께 배양한 후 생물학적 전환을 TLC, HPLC를 사용하여 확인하였다. 조효소에 의한 인삼 사포닌 $Rb_1$의 전환 경로는 다음과 같다. LB: RbNeobio R&D center, Gyeonggi-do 16954, Korea${\rightarrow}$Rd${\rightarrow}$FNeobio R&D center, Gyeonggi-do 16954, Korea${\rightarrow}$compound K, TSB: $Rb_1{\rightarrow}Rd{\rightarrow}F_2$. 가수분해된 생성된 물질은 NMR로 구조 동정하였다. 전환 산물의 효능 분석결과, 콜라겐 생성을 농도 의존적으로 증가시키는 것이 관찰되었다. 이에 본 연구에서는 ginsenoside $F_2$와 compound K 함유 인삼 전환 산물의 주름 개선 소재로서 활용가능성을 확인하였다.

Study on Application of Skin Care Cosmetic and Stabilization of Idebenone by Forming Niosome Vesicle Technology

  • Kim, In-Young
    • 한국응용과학기술학회지
    • /
    • 제36권2호
    • /
    • pp.592-599
    • /
    • 2019
  • This study is to stabilize insoluble and unstable active ingredient which is Idebenone (INCI name: hydroxydecyl ubiquinone) in a multi-lamellar vesicle (MLV) and to stabilize it in the skin care cosmetics. Idebenone is good effective raw material in the treatment of Alzheimer's disease in the medical field and a powerful antioxidant in dermatology. It is well known as a substance that inhibits the formation of melanin and cleans the skin pigment. However, it did not dissolve in any solvent and it was difficult to apply in cosmetic applications. Niosome vesicle was able to develop a nano-particle by making a multi-layer of idebenone encapsulated with a nonionic surfactant, hydrogenated lecithin and glycine soja (soybean) sterols and passing it through a high pressure microfluidizer. Idebenone niosome vesicle (INV) has been developed to have the ability to dissolve transparently in water and to promote transdermal penetration. The appearance of the INV was a yellowish liquid having specific odor, and the particle size distribution of INV was about 10~80 nm. The pH was 5~8 (mean=6.8). This capsulation with idebenone was stored in a $45^{\circ}C$ incubator for 3 months and its stability was observed and quantitatively measured by HPLC. As a result, the stability of the sample encapsulated in the niosome vesicle (97.5%) was about 66.3% higher than that of the non-capsule sample of 32.5%. Idebenone 1% INV was used for the efficacy test and clinical trial evaluation as follows. The anti-oxidative activity of INV was 38.2%, which was superior to that of 12.8% tocopherol (control). The melanin-reducing effect of B16 melanoma cells was better than INV (17.4%) and Albutin (control) (9.6%). Pro-collagen synthesis rate was 128.2% for INV and 89.3% for tocopherol (control). The skin moisturizing effect was 15.5% better than the placebo sample. The elasticity effect was 9.7% better than the placebo sample. As an application field, INV containing 1% of idebenone is expected to be able to develop various functional cosmetic formulations such as skin toner, ampoule essence, cream, eye cream and sunblock cream. In addition, it is expected that this encapsulated material will be widely applicable to emulsifying agents for skin use in the pharmaceutical industry as well as the cosmetics industry.

Bioactive lipids in gintonin-enriched fraction from ginseng

  • Cho, Hee-Jung;Choi, Sun-Hye;Kim, Hyeon-Joong;Lee, Byung-Hwan;Rhim, Hyewon;Kim, Hyoung-Chun;Hwang, Sung-Hee;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.209-217
    • /
    • 2019
  • Background: Ginseng is a traditional herbal medicine for human health. Ginseng contains a bioactive ligand named gintonin. The active ingredient of gintonin is lysophosphatidic acid C18:2 (LPA C18:2). We previously developed a method for gintonin-enriched fraction (GEF) preparation to mass-produce gintonin from ginseng. However, previous studies did not show the presence of other bioactive lipids besides LPAs. The aim of this study was to quantify the fatty acids, lysophospholipids (LPLs), and phospholipids (PLs) besides LPAs in GEF. Methods: We prepared GEF from white ginseng. We used gas chromatography-mass spectrometry for fatty acid analysis and liquid chromatography-tandem mass spectrometry for PL analysis, and quantified the fatty acids, LPLs, and PLs in GEF using respective standards. We examined the effect of GEF on insulin secretion in INS-1 cells. Results: GEF contains about 7.5% linoleic (C18:2), 2.8% palmitic (C16:0), and 1.5% oleic acids (C18:1). GEF contains about 0.2% LPA C18:2, 0.06% LPA C16:0, and 0.02% LPA C18:1. GEF contains 0.08% lysophosphatidylcholine, 0.03% lysophosphatidylethanolamine, and 0.13% lysophosphatidylinositols. GEF also contains about 1% phosphatidic acid (PA) 16:0-18:2, 0.5% PA 18:2-18:2, and 0.2% PA 16:0-18:1. GEFmediated insulin secretion was not blocked by LPA receptor antagonist. Conclusion: We determined four characteristics of GEF through lipid analysis and insulin secretion. First, GEF contains a large amount of linoleic acid (C18:2), PA 16:0-18:2, and LPA C18:2 compared with other lipids. Second, the main fatty acid component of LPLs and PLs is linoleic acid (C18:2). Third, GEF stimulates insulin secretion not through LPA receptors. Finally, GEF contains bioactive lipids besides LPAs.

아세트아미노펜 액상좌제의 물리화학적 특성에 미치는 첨가제의 영향 (Effect of Additives on the Physicochemical Properties of Acetaminophen Liquid Suppository)

  • 최한곤;정재희;유제만;이미경;김인숙;이범진;김종국
    • 약학회지
    • /
    • 제42권3호
    • /
    • pp.290-295
    • /
    • 1998
  • To optimize the formulation of acetaminophen liquid suppository, the effect of additives on the physicochemical properties of liquid suppository base was investigated. The physi cochemical properties of P 407/P 188 (15/15%) (abbreviated in 15/15) and P 407/P l88 (15/20%) (abbreviated in 15/20) were measured after the addition of following additives; 2.5% acetaminophen as an active ingredient, vehicle components (5% ethanol, 5% propylene glycol, 5% glycerin), preservatives (0.1% sodium benzoate, 0,1% methylparahydroxybenzoate, 0.1% propylparahydroxybenzoate) and 1% of sodium chloride as an ionic strength controlling agent. Poloxamer gel was prepared with three different buffer solutions (pH 1.2, 4.0 and 6.8) and the physicochemical properties, gelation temperature, gel strength and bioadhesive force, were determined. In the results, the effect of additives on the physicochemical properties was dependent on their bonding capacities including hydrogen bonding and cross-linking bonding. Because the hydrogen-bonding capacities of acetaminophen, ethanol and propylene glycol were smaller than that of poloxamer, the binding force of poloxamer gel became weak by their putting in between poloxamer gel. Therefore, the gelation temperature (15/15, $35.7^{\circ}C$ vs 37.0, 39.4 $38.2^{\circ}C$; 15/20, $29.2^{\circ}C$ vs 31.2, 32.0, $30.3^{\circ}C$) increased, and gel strength (15/15, 4.03 see vs 2.72, 2.08, 3.12sec; 15/20, 300g vs 50, 50, 200g) and bioadhesive force (15/15, $6.8{\times}10^2\;dyne/cm^2$ vs 3.2, 6.0, $6.0{\times}10^2\;dyne/cm^2$; 15/20, $97.3{\times}10^2\;dyne/cm^2$ vs 11.1, 89.5, $92.0{\times}10^2\;dyne/cm^2$) decreased. Furthermore, the binding force of poloxamer gel became strong due to the hydrogen-bonding capacities of glycerin and the cross-liking bonding of sodium salt. Then, the gelation temperature (15/15, 35.0, $32.1^{\circ}C$; 15/20, 26.0, $21.0^{\circ}C$) decreased, and gel strength (15/15, 6.51 see, 300g; 15/20, 500, 650g) and bioadhesive force (15/15, 7.2, $81.6{\times}10^2\;dyne/cm^2$; 15/20, 112.3, $309.2{\times}10^2\;dyne/cm^2$) increased. The effect of pH on the physicochemical properties of poloxamer gel was dependent on the ingredients with which the buffer solutions were prepared. Poloxamer gels prepared with pH 1.2 and 4.0 buffer solutions had the increasing gelation temperature (15/15, 37.5, $38.1^{\circ}C$; 15/20, 33.1, $34.0^{\circ}C$) and the decreasing gel strength (15/15, 2.98, 3.81sec; 15/20, 200, 200g) and bioadhesive force (15/15, $7.0{\times}10^2dyne/cm^2$; 15/20, $74.0{\sim}88.1{\times}10^2dyne/cm^2$) owing to HCl. Poloxamer gel prepared with pH 6.8 buffer solutions had the decreasing gelation temperature (15/15, $27.2^{\circ}C$; 15/20, $22.3^{\circ}C$) and the increasing gel strength (15/15, 400g; 15/20, 550g) and bioadhesive force (15/15, $207.0{\times}10^2dyne/cm^2$; 15/20, $215.0{\times}10^2dyne/cm^2$) due to the cross-linking bonding of $NaH_2PO_4\;and\;K_2HPO_4$.

  • PDF

Emodin의 항염 및 피부장벽개선 활성 연구 (Emodin Studies on Anti-inflammatory and Skin Barrier Improvement Activities)

  • 김세기;최재근;장영아
    • 한국응용과학기술학회지
    • /
    • 제38권6호
    • /
    • pp.1383-1392
    • /
    • 2021
  • 호장근, 적하수오, 대황, 알로에 등과 같은 생약재의 주요 약리 활성 성분인 emodin은 항산화, 항균, 항염, 항암, 간보호 등에 효능이 있는 것으로 보고되었다. 본 연구에서는 emodin의 피부 질환 및 기능성 소재로서의 활용 가능성을 알아보기 위해 염증 개선과 피부장벽기능 개선 관련 활성을 확인하였다. human keratinocyte인 HaCaT 세포에 대하여 항염효과를 관찰하기 위해 cytokine억제능은 ELISA kit로, 단백질 발현은 western blot으로 확인하였다. TNF-α (10 ng/mL)/IFN-γ (10 ng/mL)로 활성화된 HaCaT 세포에서 emodin을 농도별(5, 10, 20, 40) µM로 처리한 결과 TNF-α, IL-1β 및 IL-6의 생성량은 emodin의 농도가 증가함에 따라 감소됨을 확인하였다. 염증관련 단백질인 iNOS, COX-2 발현량에 대한 실험결과에서도 emodin 20 µM 농도에서 control 대비 iNOS는 48%, COX-2는 29%가 저해됨을 확인하였다. 피부장벽기능 개선의 지표로써 filaggrin, involucrin, loricirn의 mRNA 발현 정도와 filaggrin, involucrin, loricirn의 생성량을 확인한 결과 에모딘 농도에 의존적으로 증가하는 우수한 결과가 얻어졌다. 특히 20 µM 농도에서 대조군 대비 2배의 생성량 증가를 보인 filaggrin은 천연보습인자인 NMF의 형성에 관계되는 단백질로 각질층의 보습에 중요한 역할을 하는 것으로 알려져 있다. 결론적으로 emodin의 피부 질환 및 기능성 소재로서의 활용 가능성 중 염증 개선 및 피부장벽기능 개선 소재로 활용될 수 있음을 확인하였으며 향후 추가적인 연구가 수행되면 그 활용 범위가 더 넓어질 수 있을 것으로 사료된다.