• Title/Summary/Keyword: active oxygen species

Search Result 238, Processing Time 0.028 seconds

A Prolyl Endopeptidase-lnhibiting Antioxidant from Phyllanthus ussurensis

  • Chung, Shin-kyo;Nam, Ji-Ae;Jeon, So-Young;Kim, Sang-ln;Lee, Hee-Ju;Chung, Tai-Ho;Song, Kyung-Sik
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1024-1028
    • /
    • 2003
  • A prolyl endopeptidase inhibitor was isolated from the ethyl acetate soluble fraction of Phyllanthus ussurensis. The active compound was identified as an ellagitannin, corilagin. It was shown to non-competitively inhibit prolyl endopeptidase (PEP) with the $IC_{50}$ value of $1.17 \times $10^{-6}\mu$M. The Ki value was $6.70 \times 10^{-7}$ M. Corilagin was less inhibitory to other serine proteases such as chymotrypsin, trypsin, and elastase, indicating that it was relatively a specific inhibitor of PEP. Corilagin also effectively inhibited reactive oxygen species such as hydroxide and superoxide anion radical, hydrogen peroxide, and DPPH. Especially, corilagin showed potent scavel1ging activity on the superoxide anion radical in the ESR method ($IC_{50} =3.79 \times 10^{-6}$M) as well as xanthine oxidase system.

Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation

  • Hu, Min;Liu, Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.325-332
    • /
    • 2016
  • Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS ($1{\mu}g/ml$) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs.

Enhanced Expression of High-affinity Iron Transporters via H-ferritin Production in Yeast

  • Kim, Kyung-Suk;Chang, Yu-Jung;Chung, Yun-Jo;Park, Chung-Ung;Seo, Hyang-Yim
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.82-87
    • /
    • 2007
  • Our heterologous expression system of the human ferritin H-chain gene (hfH) allowed us to characterize the cellular effects of ferritin in yeasts. The recombinant Saccharomyces cerevisiae (YGH2) evidenced impaired growth as compared to the control, which was correlated with ferritin expression and with the formation of core minerals. Growth was recovered via the administration of iron supplements. The modification of cellular iron metabolism, which involved the increased expression of high-affinity iron transport genes (FET3 and FTR1), was detected via Northern blot analysis. The findings may provide some evidence of cytosolic iron deficiency, as the genes were expressed transcriptionally under iron-deficient conditions. According to our results examining reactive oxygen species (ROS) generation via the fluorescence method, the ROS levels in YGH2 were decreased compared to the control. It suggests that the expression of active H-ferritins reduced the content of free iron in yeast. Therefore, present results may provide new insights into the regulatory network and pathways inherent to iron depletion conditions.

Antioxidant Activity of Cercis chinensis and Its Protective Effect on Skin Aging

  • Na, Min-Kyun;Bae, Ki-Hwan;Hong, Nam-Doo;Yoo, Jae-Kuk;Nobuhiko Miwa
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.117-138
    • /
    • 2003
  • Reactive oxygen species are capable of damaging biomolecules such as lipids, proteins, and DNA, which can not only lead to various diseases, but also oxidative damage resulting aging. In our previous study, Cercis chinensis (Leguminosae) showed a potent antioxidant activity. Nineteen compounds were isolated through antioxidant activity-guided fractionation. The C. chinensis extract and some of the constituents exhibited a potent antioxidant activity on the free radicals and lipid peroxidation and a notable protective effect on the t-BuOOH induced oxidative damage. In vivo test of skin damage induced by UVB irradiation, the extract of C. chinensis and a constituent, piceatannol, exhibited a significant protective effect. The life-span of the HEK-N/F cells were extended by 1.21-2.12 fold as a result of the continuous administration of 3 $\mu\textrm{g}$/ml of the C. chinensis extract and the active constituents compared to that of the control. These observations were attributed to the inhibitory effect of the C. chinensis extract and its constituents on the age-dependent shortening of the telomere. Thus, C. chinensis was demonstrated to protect the skin cells against oxidative stress and inhibit thereby the cellular aging, followed by expectation as antiaging cosmetic ingredient.

  • PDF

Antioxidant Activity from the Stem Bark of Albizzia julibrissin

  • Jung, Mee-Jung;Chung, Hae-Young;Kang, Sam-Sik;Choi, Jin-Ho;Bae, Kae-sun;Choi, Jae-Sue
    • Archives of Pharmacal Research
    • /
    • v.26 no.6
    • /
    • pp.458-462
    • /
    • 2003
  • The antioxidant activity of the stem bark from Albizzia julibrissin was evaluated for its potential to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, to inhibit the generation of the hydroxyl radical ($\cdot OH$), total reactive oxygen species (ROS) and to scavenge authentic peroxynitrites ($ONOO^{-}$). The methanol extract of A. julibrissin exhibited strong antioxidant activity in the tested model systems. Therefore, it was further fractionated using several solvents. The antioxidant activity of the individual fractions were in the order of ethyl acetate (EtOAc) > n-butanol (n-BuOH) > dichloromethane ($CH_2 CI-2$) > and water ($H_2O$). The ethyl acetate soluble fraction, which exhibited strong antioxidant activity, was further purified by repeated silicagel, Sephadex LH-20 and RP-18 gel column chromatography. Sulfuretin (1) and 3 ,4 ,7-trihydroxyflavone (2) were isolated as the active principles. Compounds 1 and 2 exhibited good activity in all tested model systems. Compound 1 exhibited five times more inhibitory activity on the total ROS than Trolox. Compound 2 showed six times stronger DPPH radical scavenging activity than L-ascorbic acid. These results show the possible antioxidant activity of the A. julibrissin crude extract and its major constituents.

Protective Effects of Black Rice Extracts on Oxidative Stress Induced by tert-Butyl Hydroperoxide in HepG2 Cells

  • Lee, Seon-Mi;Choi, Youngmin;Sung, Jeehye;Kim, Younghwa;Jeong, Heon-Sang;Lee, Junsoo
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.4
    • /
    • pp.348-352
    • /
    • 2014
  • Black rice contains many biologically active compounds. The aim of this study was to investigate the protective effects of black rice extracts (whole grain extract, WGE and rice bran extract, RBE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. Cellular reactive oxygen species (ROS), antioxidant enzyme activities, malondialdehyde (MDA) and glutathione (GSH) concentrations were evaluated as biomarkers of cellular oxidative status. Cells pretreated with 50 and $100{\mu}g/mL$ of WGE or RBE were more resistant to oxidative stress in a dose-dependent manner. The highest WGE and BRE concentrations enhanced GSH concentrations and modulated antioxidant enzyme activities (glutathione reductase, glutathione-S-transferase, catalase, and superoxide dismutase) compared to TBHP-treated cells. Cells treated with RBE showed higher protective effect compared to cells treated with WGE against oxidative insult. Black rice extracts attenuated oxidative insult by inhibiting cellular ROS and MDA increase and by modulating antioxidant enzyme activities in HepG2 cells.

An Antioxidant Homo-Flavoyadorinin-B from Korean Mistletoe (Viscum album var. coloratum) (한국산 겨우살이(Viscum album var. coloratum)로부터 분리한 homo-flavoyadorinin-B의 항산화 활성)

  • Choi, Seung-Young;Chung, Shin-Kyo;Kim, Suk-Kyung;Yoo, Yung-Choon;Lee, Kyung-Bok;Kim, Jong-Bae;Kim, Ja-Young;Song, Kyung-Sik
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.279-282
    • /
    • 2004
  • An antioxidant was isolated from Korean mistletoe (Viscum album var. coloratum) by consecutive purification using silica gel, Sephadex LH-20, and RP-HPLC. The active principle was identified as homo-flavoyadorinin-B (3',7-dimethoxyluteolin-4'-O-[apiosyl $(1{\rightarrow}2)$ glucoside]) by spectral analyses. It inhibited 74.6% of hydroxyl radical and 30.6% of superoxide anion radical at 0.01 mM; however, th~compound did not show any scavenging activity against hydrogen peroxide radical. At 0.1 mM, above compound scavenged superoxide anion radical about twice as effective as positive controls, BHT and ${\alpha}-tocopherol$. Radical scavenging activities of homo-flavoyadorinin-B on DPPH, hydroxyl, and hydrogen peroxide radicals were almost same with those of positive controls.

Establishment of γ-irradiation-induced Hematopoietic Tissue Damage Model in ICR Mice (ICR 마우스에서 감마선 조사로 유도된 조혈조직 손상 모델 확립)

  • Kang, Jung Ae;Rho, Jong Kook;Jang, Beom-Su;Chung, Young-Jin;Park, Sang Hyun
    • Journal of Radiation Industry
    • /
    • v.7 no.1
    • /
    • pp.55-59
    • /
    • 2013
  • Ionizing radiation causes the massive generation of reactive oxygen species, resulting in cellular and tissue damage. The present study was performed to evaluate ${\gamma}$-irradiation induced cellular damage in ICR mice. The mice were divided into four groups with ten mice in each group. Group 1 served as an unexposed control group. Groups 2, 3, and 4 were exposed to 3, 5, and 7 Gy of ${\gamma}$-radiation, respectively. Five mice per group were sacrificed 1 and 7 days after ${\gamma}$-radiation. Exposure to ${\gamma}$-irradiation resulted in hematopoietic damage in a dose-dependent manner when compared with the unexposed control group, which featured a significantly decreased spleen index. However, the exposed mice showed no significant differences in their serum AST, ALT and in the histopathological change of their liver. These results suggest that ${\gamma}$-irradiation is a good tool to prepare a hematopoietic damage model. This animal model can be employed to study the hematopoietic efficacy of biologically active compounds.

Induction of ROS-dependent apoptosis by ethanol extract of Hizikia fusiforme in HT29 colon carcinoma cells (톳 에탄올 추출물에 의한 HT29 결장암 세포의 ROS 의존적 세포사멸 유도)

  • Su Hyun, Hong;Yung Hyun, Choi
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.93-101
    • /
    • 2022
  • Hizikia fusiforme, a type of brown algae, is widely used in Asian cuisine. It has been reported to have various pharmacological effects. In this study, the effects of the ethanol extract from H. fusiforme (EAHF) on the proliferation of human colon carcinoma cells were investigated. The effect on the survival of human hepatocarcinoma and colon carcinoma cells was examined, and results revealed that the anti-proliferative effects of EAHF were higher in colon carcinoma cells than in hepatocarcinoma cells. The inhibition of proliferation of HT29 colon carcinoma cells by EAHF treatment was closely related to the induction of apoptosis. EAHF treatment also increased caspase activity and poly(ADP-ribose) polymerase degradation, induced mitochondrial dysfunction, altered Bcl-2 family protein expression, and increased the rate of cytochrome c released from the mitochondria into the cytoplasm. Furthermore, the production of reactive oxygen species (ROS) was markedly stimulated by EAHF treatment, and when ROS production was blocked, EAHF-induced cytotoxicity was significantly attenuated. These results indicate that the anticancer activity of EAHF in HT29 colon carcinoma cells was induced by ROS-dependent mitochondrial impairment. While EAHF exhibited potent anticancer activity in colon carcinoma cells in this study, further studies on the active components of EAHF and their efficacy should be performed.

Effects of Panax ginseng and ginsenosides on oxidative stress and cardiovascular diseases: pharmacological and therapeutic roles

  • Hyun, Sun Hee;Bhilare, Kiran D.;In, Gyo;Park, Chae-Kyu;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.33-38
    • /
    • 2022
  • Traditionally, Asian ginseng or Korean ginseng, Panax ginseng has long been used in Korea and China to treat various diseases. The main active components of Panax ginseng is ginsenoside, which is known to have various pharmacological treatment effects such as antioxidant, vascular easing, anti-allergic, anti-inflammatory, anti-diabetes, and anticancer. Most reactive oxygen species (ROS) cause chronic diseases such as myocardial symptoms and cause fatal oxidative damage to cell membrane lipids and proteins. Therefore, many studies that inhibit the production of oxidative stress have been conducted in various fields of physiology, pathophysiology, medicine and health, and disease. Recently, ginseng or ginsenosides have been known to act as antioxidants in vitro and in vivo results, which have a beneficial effect on preventing cardiovascular disease. The current review aims to provide mechanisms and inform precious information on the effects of ginseng and ginsenosides on the prevention of oxidative stress and cardiovascular disease in animals and clinical trials.