• Title/Summary/Keyword: active motion

Search Result 921, Processing Time 0.034 seconds

Comparison of Seismic Retrofit Efficiencies of Base Isolation Systems for Existing Bridges

  • 조효남;엄원석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.81-86
    • /
    • 2000
  • In recent modern protective systems have been introduced to reduce the vulnerability of bridges to seismic events. These protective systems include base isolation devices of different types, damping devices and active control devices. The objective of this study is to analytically evaluate the efficiency of a seismic retrofit scheme using base isolation systems, such as lead rubber bearings and sliding isolators. In this study, a triaxial model was used, which is capable of accurately developing the behavior of sliding isolators including the influence of the changing vertical force and velocity on the friction coefficients. Seismic response analyses of the bridge before and after retrofit were carried out by using a three-dimensional nonlinear seismic analysis program, IDARC-BRIDGE. To evaluate the efficiency of a retrofit scheme using triaxial isolators, a comparative study of performances of above two base isolation systems was conducted, and the numerical results show that the triaxial isolation solution can effectively reduce the sheat forces at the piers for the vertical ground motion.

  • PDF

Implementation of Self-expression Tool with Interactive Hangeul

  • Lim, Sooyeon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.43-49
    • /
    • 2018
  • Modern people communicate in a digital space without being limited by physical space and time. On the internet, people's desire for self-expression is getting bigger, and the most common self-expression tool is characters. Characters are visual materials to express human thoughts and desires. This study is a method to positively express the viewer's self in an interactive Hangeul system. The proposed system produces new formative shapes and meanings of Hangeul through the process of deconstructing and reconstructing the characters. Immediate character transformations that are synchronized with the motion of the viewer act as a tool of self-expression by inducing the viewer's active interaction repeatedly. Therefore, the proposed interactive Hangeul is more than enough to be used as a new graphic tool beyond the text to be read, and it is highly likely to develop into cultural contents using it.

Performance Characteristics of Tubular Linear Iduction Motor (동기형 직선유도전동기의 동작특성)

  • Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.3
    • /
    • pp.153-162
    • /
    • 1987
  • The purpose of this paper is to analysis and develop theoretically the characteristics of tubular linear induction motor, which is a special industrial motor that generates directly thrust force from electrical power. The Poisson equation about vector potential which is created by the application of Maxwell electromagnetic equation with the speed considered, results in modified Bessel equation by the assumption that is applied to each region of the experimental motor. Vector potential, magnetic flux density, secondary current, and thrust force according to its region respectively were found out by substituting boundary condition for this equation and rearranging. Besides, a attendant materials, that is, thermal characteristic, which is one of the characteristics under the operation of experimental motor each part's magnetic flux distribution characteristics within active zone, the required time for reciprocating motion, and variation of power factor vs. a slip were found.

  • PDF

Efficient Tracking of a Moving Object Using Optimal Representative Blocks

  • Kim, Wan-Cheol;Hwang, Cheol-Ho;Park, Su-Hyeon;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.41.3-41
    • /
    • 2002
  • Motion estimation using Full-Search(FS) and Block-Matching Algorithm(BMA) is often used in the case of moving object tracking by vision sensors. However these methods often miss the real-time vision data because these schemes suffer the heavy computational load. When the image size of moving object is changed in an image frame according to the distance between the camera of mobile robot and the moving object, the tracking performance of a moving object may decline with these methods because of the shortage of active handling. In this paper, the variable-representative block that can reduce a lot of data computations, is defined and optimized by changing the size of representative block accor...

  • PDF

Simulation of Three Dimensional Motion of the Knee Joint in Total Knee Arthroplasty (인공 무릎 관절의 3차원 운동 시뮬레이션)

  • Kim, Ki-Bum;Son, Kwon;Moon, Byung-Young
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1310-1315
    • /
    • 2003
  • Severe osteoarthrosis of the knee joint often requires total knee arthroplasty (TKA) to yield adequate knee function. The knee joint with TKA is expected ideally to restore the characteristics, however, this is not necessarily true in the clinical cases. In this study the motions of the intact joint and the joint after TKA were investigated numerically using computer simulation. For active knee extension from 90 degrees of flexion to full extension, the intact knee joint exhibited anterior tibial translation near the full extension while it showed only rotation for other flexion angles. Physiologic external rotation of the tibia near full extension was also noted in the analytical model. The analysis of the tibial insert of three different shapes (flat, semicurved, and curved types) demonstrated characteristic rotational and sliding motions as well as different contact forces.

  • PDF

The wake flow control behind a circular cylinder using ion wind (이온풍을 이용한 실린더 뒤의 후류 제어)

  • Hyun K T;Chun C H
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.459-462
    • /
    • 2002
  • Many active and passive flow control methods have been studied since decades, but there are only few works about flow control methods using ion wind. This paper presents an experimental study on the wake control behind a circular cylinder using ion wind, a bulk motion of neutral molecules driven by locally ionized air of corona discharge. Experiments are done f3r different electrohydrodynamic numbers - the ratio of an electrical body farce to a fluid Inertial force - from 0 to 2 and for the Reynolds number ranging from $4{\times}10^3\;to\;8{\times}10^3$. Pressure distributions over a cylinder surface are measured and flow visualizations are carried out by smoke wire method. Flow visualizations confirm that ion wind affects significantly the wake structure behind a circular cylinder and pressure drag could be dramatically reduced by the superimposing ion wind.

  • PDF

A New Technique to Escape Local Minimum in Artificial Potential Field Based Path Planning

  • Park, Min-Gyu;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1876-1885
    • /
    • 2003
  • The artificial potential field (APF) methods provide simple and efficient motion planners for practical purposes. However, these methods have a local minimum problem, which can trap an object before reaching its goal. The local minimum problem is sometimes inevitable when an object moves in unknown environments, because the object cannot predict local minima before it detects obstacles forming the local minima. The avoidance of local minima has been an active research topic in the potential field based path planing. In this study, we propose a new concept using a virtual obstacle to escape local minima that occur in local path planning. A virtual obstacle is located around local minima to repel an object from local minima. We also propose the discrete modeling method for the modeling of arbitrary shaped objects used in this approach. This modeling method is adaptable for real-time path planning because it is reliable and provides lower complexity.

A Study of Rotor Vibration Reduction using Fuzzy Magnetic Damper System (퍼지 마그네틱 댐퍼를 사용한 회전체 진동의 저감 연구)

  • Lee, Hyeong-Bok;Kim, Yeong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.748-755
    • /
    • 2001
  • This paper concerns rotor vibration reduction using magnetic damper system. The fuzzy control logic is utilized to fulfill desired motion. The fuzzy system structure and membership function were first determined by simulation results. The researched control logic contains two fuzzy controller : reference position variation according to the rotor whirling status and error compensation algorithm to minimize the rotor vibration due to unbalance and unstable fluid film force. The Sugeno type output membership function was utilized by several trials and optimized membership function constants were selected from experiments. The experimental results show that the proposed method effectively control and reduce the rotor vibration with fluid film bearings.

Control of a Two-Arm Robot System for Assembly in Highy Uncertain Environment (불확실한 환경에서 조립을 수행하는 두 대의 로봇 팔 제어)

  • Jeong, Seong-Yeop;Gang, Gyeong-Dae;Lee, Du-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3072-3079
    • /
    • 2000
  • Assembly tasks are often performed by one robot with fixtures. This type of assembly system has low flexibility in terms of the variety of parts and the part-presentation the system can handle. This paper addresses assembly without fixtures using two-manipulator robot. An active method using force feedback is proposed for the peg-in-hole assembly in highly uncertain environment. Assembly states are defined as status having unique motion constraints and events are modeled as variation of the environmental force. The states are recognized through identification of the events using two 6-d. o. f. force/moment sensors. The proposed method is verified and evaluated by experiments with round peg-in-hole assembly.

Empirical Closed Loop Modeling of a Suspension System Using Neural Network (신경회로망을 응용한 현가장치의 폐회로 시스템 규명)

  • Kim, I.Y.;Chong, K.T.;Hong, D.P.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.29-38
    • /
    • 1997
  • A closed-loop system modeling of an active/semiactive suspension system has been accomplished through an artificial neural network. A 7DOF full model as a system's equation of motion has been derived and an output feedback linear quadratic regulator has been designed for control purpose. A training set of a sample data has been obtained through a computer simulation. A 7DOF full model with LQR controller simulated under several road conditions such as sinusoidal bumps and rectangular bumps. A general multilayer perceptron neural network is used for dynamic modeling and target outputs are fedback to the a layer. A backpropagation method is used as a training algorithm. Model validation of new dataset have been shown through computer simulations.

  • PDF