• Title/Summary/Keyword: active motion

Search Result 921, Processing Time 0.027 seconds

3-Dimensional Analysis of the Running Motion in the Max-Velocity Phase and the Fatigue Phase During 400m Sprint by Performed Elementary School Athletes (달리기시 최고 속도 및 피로 구간의 3차원 동작 분석)

  • Bae, Sung-Jee
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.115-124
    • /
    • 2006
  • This study was conducted to investigate the running motion in the max-velocity phase(150-160m) and the fatigue phase(350-360m) during 400m sprint by performed elementary school athletes. Eighteen elementary school male athletes who achieved at least the 3rd place in the sprint at the Korea Gangwon-Do elementary school track and field meetings during 2004 and 2005 were selected as subjects. The running motions performed by the subjects were recorded using two 8mm high speed cameras at the nominal speed of 100 frames per second. The Direct Linear Transformation technique was adopted from the beginning of filming to the final stage of data extraction. KWON 3D motion analysis package program was used to compute the 3 Dimensional coordinates, smoothing factor in which lowpass filtering method was used and cutoff frequency was 6.0 Hz. The movement patterns during foot touchdown and takeoff for the running stride were related with the biomechanical consideration. Within the limitations of this study it is concluded: In order to increase running velocity, several conditions must be fullfilled at the instant of leg touchdown and takeoff during the fatigue phase(350-360m). First, the body C.O.G(Center of Gravity) height should be raised at the instant of leg touchdown and takeoff during the fatigue phase. Second, the foot contact time should be shortened and the takeoff distance should be increased at the foot takeoff during the fatigue phase. Third, the shank angular velocity with respect to a transverse axis through the center of gravity should be increased during the leg touchdown and takeoff in the fatigue phase. Forth, the active landing style described as clawing the ground with the sole of the foot should be performed during the leg touchdown and takeoff in the fatigue phase) phase. Fifth, In order to increase running velocity in the fatigue phase while taking a slightly greater leg knee angle and body lean angle within the range of the subject's running motion during the fatigue phase would result in greater flight distance.

Reliability of the Joint Neutral Position and Measurement Methods of the Ankle Joint Complex Range of Motion (발목관절 복합체의 가동범위 측정을 위한 중립위치와 측정방법의 신뢰도)

  • Hong, Wan-Sung;Kim, Gi-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.4
    • /
    • pp.45-51
    • /
    • 2011
  • Purpose: To determine the correct measurement methods of the ankle joint complex range of motion for measuring the neutral position and evaluate the rater reliability. In addition, the impact of training on the rater reliability was also assessed. Methods: The subjects were eleven healthy women, who were evaluated by two physical therapists and one physical therapist recorded the results of the study. Standard goniometer was used as the measurement tool. The ankle and subtalar joint neutral position and the active range of motion of the ankle and subtalar joint were measured. Intra-rater reliability and inter-rater reliability measures were analyzed with intraclass correlation coefficients. Results: Intra-rater reliability and inter-rater reliability ranged from high to medium for the neutral position of the ankle joint complex. Intra-rater reliability for dorsiflexion and plantarflexion measurements was medium, while the inter-rater reliability was high. The range of motion of the subtalar joint was measured, and the intra-rater reliability and inter-rater reliability were low and medium, respectively Also, the intra-rater reliability was increased with formal training of the measurement techniques. Intra-rater reliability was reduced in case the raters had not undertaken the training. Conclusion: In summary, the results obtained with the measurement tools and joint measurement of position, indicate the consistency of repeated measurements made by the same observers. Under the same circumstances along with repetition of the same measurement technique during training caused an increase in the rater reliability of formally trained raters.

Correlation of response spectral values in Japanese ground motions

  • Jayaram, Nirmal;Baker, Jack W.;Okano, Hajime;Ishida, Hiroshi;McCann, Martin W. Jr.;Mihara, Yoshinori
    • Earthquakes and Structures
    • /
    • v.2 no.4
    • /
    • pp.357-376
    • /
    • 2011
  • Ground motion models predict the mean and standard deviation of the logarithm of spectral acceleration, as a function of predictor variables such as earthquake magnitude, distance and site condition. Such models have been developed for a variety of seismic environments throughout the world. Some calculations, such as the Conditional Mean Spectrum calculation, use this information but additionally require knowledge of correlation coefficients between logarithmic spectral acceleration values at multiple periods. Such correlation predictions have, to date, been developed primarily from data recorded in the Western United States from active shallow crustal earthquakes. This paper describes results from a study of spectral acceleration correlations from Japanese earthquake ground motion data that includes both crustal and subduction zone earthquakes. Comparisons are made between estimated correlations for Japanese response spectral ordinates and correlation estimates developed from Western United States ground motion data. The effect of ground motion model, earthquake source mechanism, seismic zone, site conditions, and source to site distance on estimated correlations is evaluated and discussed. Confidence intervals on these correlation estimates are introduced, to aid in identifying statistically significant differences in correlations among the factors considered. Observed general trends in correlation are similar to previous studies, with the exception of correlation of spectral accelerations between orthogonal components, which is seen to be higher here than previously observed. Some differences in correlations between earthquake source zones and earthquake mechanisms are observed, and so tables of correlations coefficients for each specific case are provided.

The Pupil Motion Tracking Based on Active Shape Model Using Feature Weight Vector (특징 가중치 벡터를 적용한 능동 형태 모델 기반의 눈동자 움직임 추적)

  • Kim, Soon-Beak;Lee, Soo-Heum
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.205-208
    • /
    • 2005
  • 본 논문은 특징 가중치 벡터를 적용하여 능동형태 모델(Active Shape Model)기반에서 눈동자의 움직임 추적 속도를 향상시키는 방법을 제안한다. 일반적인 능동형태 모델에서는 객체 추적을 위한 PDM 구성을 위해 각 특징점 구성 벡터의 유클리디안 거리의 최소 값으로 Training Set정렬 과정을 수행한다. 이 과정에서 적절하지 못한 샘플 영상으로 인해 안정된 PDM을 구성하지 못하는 문제점이 발생한다. 이러한 문제점을 해결하기 위하여 본 논문에 서는 형태를 구성하는 특징점마다 가중치를 부여하는 벡터를 작성하고, 최소자승근사법으로 최유사 특징점 벡터를 산출하기 위한 선형방정식을 구상하였다. 이로 인해 안정된 PDM을 구성할 수 있었으며, 눈동자 추적실험을 통해 형태적 움직임을 보정하는 실험을 수행하였다. 실험결과 기존의 능동형태 모델에 비해 반복연산의 횟수가 줄어들고, 다양한 형태로 나타나는 눈동자의 움직임 추적에 보다 안정적인 결과를 얻을 수 있었다.

  • PDF

Control of Vehicle Yaw Moment using Sliding Mode with Time-Varying Switching Surface (시변절환면을 갖는 슬라이딩 모드에 의한 차량의 요-모멘트 제어)

  • Lee, Chang-Ro;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.666-672
    • /
    • 2003
  • This paper presents a design of the controller for vehicle lateral dynamics using active yaw moment. Vehicle lateral motion is incorporated with directional controllability and stability. These are conflicting each other from the view of vehicle handling performance. To compromise the trade-off between these two aspects, we suggest a new control algorithm based on the sliding mode with time-varying switching surface according to the body side slip angle. The controller can deal with the nonlinear region in vehicle driving condition and be robust to the parameter uncertainties in the plant model. Control performance is evaluated from the simulation for the vehicle of real parameters on the road with various tire-road frictions.

Active Vibration Control of Smart Hull Structures (지능형 Hull구조물의 능동 진동제어)

  • Sohn, Jung-Woo;Choi, Seung-Bok;Kim, Heung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.192-195
    • /
    • 2005
  • In this study, dynamic characteristics of an end-capped hull structure with surface bonded piezoelectric actuators are studied. Finite element modeling is used to obtain practical governing equation of motion and boundary conditions of smart hull structure. Modal analysis is conducted to investigate the dynamic characteristics of the hull structure. Piezoelectric actuators are attached where the maximum control performance can be obtained. Active controller based on Linear Quadratic Gaussian (LQG) theory is designed to suppress vibration of smart hull structure. It is observed that closed loop damping can be improved with suitable weighting factors in the developed LQG controller.

  • PDF

Design of Hybrid Mount Using Rubber Element and Piezoelctric Actuator with Application to Vibration Control (고무와 압전작동기를 이용한 하이브리드 마운트의 설계 및 진동제어 응용)

  • Yook, Ji-Yong;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.919-924
    • /
    • 2006
  • This paper presents active vibration control using a hybrid mount which consists of rubber element and the piezostack actuator. After identifying stiffness and damping properties of the rubber element and piezoelectric elements, a mechanical model of the hybrid mount is established. The mount model is then incorporated with the vibration system, and the governing equation of motion is obtained in a state space. A sliding mode controller and LQG controller are designed in order to actively attenuate the vibration of the system subjected to high frequency and small magnitude excitations. Control responses such as acceleration and force transmission through the hybrid mount are evaluated by computer simulation.

  • PDF

Modeling and Control of Cone-Shaped Active Magnetic Bearing System (원추형 능동 자기베어링계의 모형화 및 제어)

  • 정호섭;김철순;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3073-3082
    • /
    • 1993
  • A magnetically suspended robot joint is developed, which is free of dust and oil generation. Two radial bearings consisting of cone-shaped magnet cores control the rotor motion in the axial and radial directions. A linearized dynamic model is developed for active control of the magnetic bearing system. The control algorithm is constructed such that the axial displacement of the joint is controlled by radial control current to the pairs of facing radial bearings. The stability and control performance is tested through numerical simulation based on the nonlinear model. Experiments are also performed to verify the theoretical development.

Design of Hybrid Mount Using Rubber Element and Piezoelctric Actuator with Application to Vibration Control (고무와 압전작동기를 이용한 하이브리드 마운트의 설계 및 진동제어 응용)

  • Yook, Ji-Yong;Sung, Kum-Gil;Moon, Seok-Jun;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.391-397
    • /
    • 2007
  • This paper presents active vibration control using a hybrid mount which consists of rubber element and the piezostack actuator. After identifying stiffness and damping properties of the rubber element and piezoelectric elements, a mechanical model of the hybrid mount is established. The mount model is then incorporated with the vibration system, and the governing equation of motion is obtained in a state space. A sliding mode controller and LQG controller are designed in order to actively attenuate the vibration of the system subjected to various frequencies and small magnitude excitations. Control responses such as acceleration and force transmission through the hybrid mount are evaluated by computer simulation.

Onboard Active Vision Based Hovering Control for Quadcopter in Indoor Environments (실내 환경에서의 능동카메라 기반 쿼더콥터의 호버링 제어)

  • Jin, Tae-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • In this paper, we describe the design and performance of UAV system toward compact and fully autonomous quadrotors, where they can complete logistics application, rescue work, inspection tour and remote sensing without external assistance systems like ground station computers, high-performance wireless communication devices or motion capture system. we propose high-speed hovering flyght height control method based on state feedback control with image information from active camera and multirate observer because we can get image of the information only every 30ms. Finally, we show the advantages of proposed method by simulations and experiments.