• Title/Summary/Keyword: active motion

Search Result 921, Processing Time 0.031 seconds

Controlled active exercise after open reduction and internal fixation of hand fractures

  • Jun, Dongkeun;Bae, Jaehyun;Shin, Donghyeok;Choi, Hyungon;Kim, Jeenam;Lee, Myungchul
    • Archives of Plastic Surgery
    • /
    • v.48 no.1
    • /
    • pp.98-106
    • /
    • 2021
  • Background Hand fractures can be treated using various operative or nonoperative methods. When an operative technique utilizing fixation is performed, early postoperative mobilization has been advocated. We implemented a protocol involving controlled active exercise in the early postoperative period and analyzed the outcomes. Methods Patients who were diagnosed with proximal phalangeal or metacarpal fractures of the second to fifth digits were included (n=37). Minimally invasive open reduction and internal fixation procedures were performed. At 3 weeks postoperatively, controlled active exercise was initiated, with stress applied against the direction of axial loading. The exercise involved pain-free active traction in three positions (supination, neutral, and pronation) between 3 and 5 weeks postoperatively. Postoperative radiographs and range of motion (ROM) in the interphalangeal and metacarpophalangeal joints were analyzed. Results Significant improvements in ROM were found between 6 and 12 weeks for both proximal phalangeal and metacarpal fractures (P<0.05). At 12 weeks, 26 patients achieved a total ROM of more than 230° in the affected finger. Postoperative radiographic images demonstrated union of the affected proximal phalangeal and metacarpal bones at a 20-week postoperative follow-up. Conclusions Minimally invasive open reduction and internal fixation minimized periosteal and peritendinous dissection in hand fractures. Controlled active exercise utilizing pain-free active traction in three different positions resulted in early functional exercise with an acceptable ROM.

Mathematical modeling of actively controlled piezo smart structures: a review

  • Gupta, Vivek;Sharma, Manu;Thakur, Nagesh
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.275-302
    • /
    • 2011
  • This is a review paper on mathematical modeling of actively controlled piezo smart structures. Paper has four sections to discuss the techniques to: (i) write the equations of motion (ii) implement sensor-actuator design (iii) model real life environmental effects and, (iv) control structural vibrations. In section (i), methods of writing equations of motion using equilibrium relations, Hamilton's principle, finite element technique and modal testing are discussed. In section (ii), self-sensing actuators, extension-bending actuators, shear actuators and modal sensors/actuators are discussed. In section (iii), modeling of thermal, hygro and other non-linear effects is discussed. Finally in section (iv), various vibration control techniques and useful software are mentioned. This review has two objectives: (i) practicing engineers can pick the most suitable philosophy for their end application and, (ii) researchers can come to know how the field has evolved, how it can be extended to real life structures and what the potential gaps in the literature are.

Performance Analysis of Stabilizer Fin Applied Coanda System (코안다 시스템이 장착된 안정기용 핀의 성능해석)

  • Seo, Dae-Won;Lee, Se-Jin;Oh, Jungkeun
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • Stabilizer fins are installed on each side of a ship to control its roll motion. The most common stabilizer fin is a rolling control system that uses the lift force on the fin surface. If the angle of attack of a stabilizer fin is zero or the speed is zero, it cannot control the roll motion. The Coanda effect is well known to generate lift force in marine field. The performance of stabilizer fin that applies the Coanda effect has been verified by model tests and numerical simulations. It was found that a stabilizer fin that applied the Coanda effect at Cj = 0.085 and a zero angle of attack exactly coincided with that of the original fin at α = 26°. In addition, the power needed to generate the Coanda effect was not high compared to the motor power of the original stabilizer fin.

Time delay control with state feedback for azimuth motion of the frictionless positioning device

  • Jeong, Ho-Seop;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.385-388
    • /
    • 1996
  • A time delay controller with state feedback is proposed for azimuth motion control of the frictionless positioning device which is subject to the variations of inertia in the presence of measurement noise. The time delay controller, which is combined with a low-pass filter to attenuate the effect of measurement noise, ensures the asymptotic stability of the closed loop system. It is found that the low-pass filter tends to increase the robustness in the design of time delay controller as well as the gain and phase margins of the closed loop system. Numerical and experimental results support that the proposed controller guarantees a good tracking performance irrespective of the variation of inertia and the presence of measurement noise.

  • PDF

Training machine for active rehabilitation/training of elderly people

  • Moromugi, Shunji;Koujitani, Tsutomu;Kim, Seok-Hwan;Matsuzaka, Nobuou;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1648-1652
    • /
    • 2004
  • An advanced training machine designed for elderly people is proposed. The training machine allows users to have a safe and effective training through exercise close to ordinal motion appears in daily life such as standing up/down motion. The activation level of user's muscle is real timely monitored during the exercise and the training load is adjusted based on the body information. The training load is exerted and continuously controlled by actuation of an air cylinder.

  • PDF

A Study on the Performance Characteristics of the VDC Vehicle (VDC 장착 차량의 기동 특성에 관한 연구)

  • 김태기;박윤기;서명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.146-157
    • /
    • 1999
  • Safety systems for road vehicles have been rapidly developed in recent years. Especially, the VDC(Vehicle dynamics Control) system is a new active safety system for road vehicles which controls its dynamic vehicle motion in emergency situations . In the case of configuring the VDC system by utilizing the ABS(Anti-lock Brake System), the role of a control logic which directly influences the vehicle motion is very important. In this study the performance of the VDC vehicle was compared to the performances of the CBS (Conventional Brake system )and ABS vehicle. For various driving conditions , the simulation of vehicle dynamics with known VDC control logics was performed. Analysis results showed the VDC vehicle could stably perform even on the road of low coefficient of friction. In addition it was shown that the basic control logic for the VDC system could outstandingly improve driving stability in the case of braking as well as constant speed cruising.

  • PDF

ROBUST CONTROLLER DESIGN FOR IMPROVING VEHICLE ROLL CONTROL

  • Du, H.;Zhang, N
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.445-453
    • /
    • 2007
  • This paper presents a robust controller design approach for improving vehicle dynamic roll motion performance and guaranteeing the closed-loop system stability in spite of vehicle parameter variations resulting from aging elements, loading patterns, and driving conditions, etc. The designed controller is linear parameter-varying (LPV) in terms of the time-varying parameters; its control objective is to minimise the $H_{\infty}$ performance from the steering input to the roll angle while satisfying the closed-loop pole placement constraint such that the optimal dynamic roll motion performance is achieved and robust stability is guaranteed. The sufficient conditions for designing such a controller are given as a finite number of linear matrix inequalities (LMIs). Numerical simulation using the three-degree-of-freedom (3-DOF) yaw-roll vehicle model is presented. It shows that the designed controller can effectively improve the vehicle dynamic roll angle response during J-turn or fishhook maneuver when the vehicle's forward velocity and the roll stiffness are varied significantly.

Unusual Presentation of Solitary Osteochondroma of Hand (수지 운동을 제한하는 단독 골연골종 - 1예 보고 -)

  • Choi, Nam-Hong;Ahn, Hyoung-Kook
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.2 no.1
    • /
    • pp.116-119
    • /
    • 1996
  • The solitary osteochondroma is a hamartoma of the skeleton which derives from an aberrant subperiosteal germ of the fertile cartilage. Osteochondromas, which are uncommon in the hand can occur at the distal end of the proximal and middle phalanx away from the epiphyseal plate region. We experienced a rare case of solitary osteochondroma arising from distal end of fifth proximal phalanx of hand, and limiting the active motion of proximal interphalangeal joint. The patient was treated by marginal excision and tumor showed characteristic microscopic findings of osteochondroma.

  • PDF

Tip position control of translational 1-link flexible arm with tip mass (Tip mass를 갖는 병진운동 1-링크 탄성암 선단의 위치제어)

  • 이영춘;방두열;이성철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1036-1041
    • /
    • 1993
  • The tip of the flexible robot arm has to be controlled by the active control reducing vibration because it has residual vibration after getting to desired position. This paper presents an end-point position control of a 1-link flexible robot arm having tip mass by the PID control algorithm. The system is composed of a flexible arm with tip mass, dc servomotor and ballscrew mechanism under translational motion. The feedback signal composed of the tip displacement measured by laser sensor, estimated velocity and acceleration is used to control the base motion. Theoretical results are obtained by applying the Laplace transform and the numerical inversion method to the governing equations. After the flexible robot arm reaches to. the desired position, the residual vibration is controlled by the PID algorithm. This paper gives the simulation and experimental results of end-point responses according to changing tip-mass and arm length. And this algorithm shows good effects of reducing the residual vibration. Approximately, theoretical response is in good agreement with experimental one.

  • PDF

Active training machine with muscle activity sensor for elderly people

  • Matsuda, Goichi;Tanaka, Motohiro;Yoon, Sung-Jae;Ishimatsu, Takakazu;Kim, Seok-Hwan;Moromugi, Shunji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1169-1172
    • /
    • 2005
  • For elderly people, an advanced training machine that uses actuator and can adjust load according to muscle activity is proposed. The proposed machine allows users to have a safe and effective training through exercise close to ordinal motion appears in daily life such as stretching or stooping motion. A muscle activity sensor real-timely monitors the activation level of user's muscle during the exercise and the training load is adjusted based on the measured data. The training load is exerted and continuously controlled by electric/pneumatic actuator.

  • PDF