Journal of electromagnetic engineering and science
/
v.11
no.2
/
pp.105-112
/
2011
In phase-locked frequency synthesizers, a fast-lock technique is frequently employed to overcome the trade-off between a lock-time and a spurious response. The function of fast-lock in a conventional PLL (Phased Lock Loop) IC (Integrated Circuit) is limited by a factor of 16, which is usually implemented by a scaling of charge pumper, and consequently a lock time improvement of a factor of 4 is possible using the conventional PLL IC. In this paper, we propose a novel external active fast-lock loop filter. The proposed loop filter provides, conceptually, an unlimited scaling of charge pumper current, and can overcome conventional trade-off between lock-time and spur suppression. To demonstrate the validity of our proposed loop-filter, we fabricated an X-band frequency synthesizer using the proposed loop filter. The loop filter in the synthesizer is designed to have a loop bandwidth of 100 kHz in the fast-lock mode and a loop bandwidth of 5 kHz in the normal mode, which corresponds to a charge pumper current change ratio of 400. The X-band synthesizer shows successful performance of a lock-time of below 10 ${\mu}sec$ and reference spur suppression below -64 dBc.
Wan, Zhiqiang;Xiong, Jian;Lei, Ji;Chen, Chen;Zhang, Kai
Journal of Power Electronics
/
v.15
no.5
/
pp.1286-1294
/
2015
Capacitor current feedback active damping is extensively used in grid-connected converters with an LCL filter. However, systems tends to become unstable when the digital control delay is taken into account, especially in low switching frequencies. This paper discusses this issue by deriving a discrete model with a digital control delay and by presenting the stable region of an active damping loop from high to low switching frequencies. In order to overcome the disadvantage of capacitor current feedback active damping, this paper proposes a modified approach using grid current and converter current for feedback. This can expand the stable region and provide sufficient active damping whether in high or low switching frequencies. By applying the modified approach, the active damping loop can be simplified from fourth-order into second-order, and the design of the grid current loop can be simplified. The modified approach can work well when the grid impedance varies. Both the active damping performance and the dynamic performance of the current loop are verified by simulations and experimental results.
Tumbelaka, Hanny H.;Borle, Lawrence J.;Nayar, Chemmangot V.;Lee, Seong-Ryong
Journal of Power Electronics
/
v.9
no.3
/
pp.365-376
/
2009
In this paper, the implementation of a three-phase shunt active power filter is presented. The filter is essentially three independent single-phase current-controlled voltage source inverters (CC-VSI) with a common DC bus. The CC- VSI is operated to directly control the AC grid current to be sinusoidal and in phase with the grid voltage without detecting the load currents. The APF consists of a current control loop, which shapes the grid currents to be sinusoidal and a voltage control loop, which regulates the active power balance of the system. The experimental results indicate that the active filter is able to handle predominantly the harmonics, as well as the unbalance and reactive power, so that the grid currents are sinusoidal, in phase with the grid voltages and symmetrical.
This paper investigates the active damping of grid-connected LCL filter resonance using high-pass filter (HPF) of the grid current. An expression for such HPF is derived in terms of the filter components. This expression facilitates a general study of the actively damped filter behavior in the discrete time domain. Limits for the HPF parameters are derived to avoid the excitation of unstable open loop poles since such excitation can reduce both the damping performance and the system robustness. Based on this study, straightforward co-design steps for the active damping loop along with the fundamental current regulator are proposed. A numerical example along with simulation and experimental results are presented to verify the theoretical analyses.
Park, Sang-Jun;Yong, Ki-Ryeok;Lee, Young-Jae;Sung, Sang-Kyung
Journal of Institute of Control, Robotics and Systems
/
v.18
no.6
/
pp.546-554
/
2012
This paper suggests a design method of an improved phase control loop for tracking resonant frequency of solid type precision resonant gyroscope. In general, a low cost MEMS gyroscope adapts the automatic gain control loops by taking a velocity feedback configuration. This control technique for controlling the resonance amplitude shows a stable performance. But in terms of resonant frequency tracking, this technique shows an unreliable performance due to phase errors because the AGC method cannot provide an active phase control capability. For the resonance control loop design of a solid type precision resonant gyroscope, this paper presents a phase domain control loop based on linear PLL (Phase Locked Loop). In particular, phase control loop is exploited using a higher order PLL loop filter by extending the first order active PI (Proportion-Integral) filter. For the verification of the proposed loop design, a hemispherical resonant gyroscope is considered. Numerical simulation result demonstrates that the control loop shows a robust performance against initial resonant frequency gap between resonator and voltage control oscillator. Also it is verified that the designed loop achieves a stable oscillation even under the initial frequency gap condition of about 25 Hz, which amounts to about 1% of the natural frequency of a conventional resonant gyroscope.
Phase noise in a phase-locked-loop (PLL) is unwanted and unavoidable. It is a main concern in oscillation system especially PLL. The phase noise is derived in term of power spectrum density by using a reliable phase noise model. There are four noise sources being considered in this paper, which are generated by reference oscillator, voltage controlled oscillator, filter, and main divider. The major concern for this paper is the noise from the filter. Two types of second order low pass filter are used in the PLL system. Applying the mathematical phase noise model, the output noises are compared. The total noise from the passive filter is lower than the active filter at the offset frequency range between 1 Hz to 33 kHz.
This paper analyses the mathematical model and control strategies of a Hybrid Active Power Filter with Injection Circuit (IHAPF). The control strategy based on the load harmonic current detection is selected. A novel control method for a IHAPF, which is based on the analyzed control mathematical model, is proposed. It consists of two closed-control loops. The upper closed-control loop consists of a single fuzzy logic controller and the IHAPF model, while the lower closed-control loop is composed of an Adaptive Network based Fuzzy Inference System (ANFIS) controller, a Neural Generalized Predictive (NGP) regulator and the IHAPF model. The purpose of the lower closed-control loop is to improve the performance of the upper closed-control loop. When compared to other control methods, the simulation and experimental results show that the proposed control method has the advantages of a shorter response time, good online control and very effective harmonics reduction.
Transactions of the Korean Society of Automotive Engineers
/
v.11
no.6
/
pp.222-228
/
2003
Lane departure avoidance system is one of the key technologies for the future active-safety passenger cars. The lane departure avoidance system is composed of two subsystems; lane sensing algorithm and active-steering controller. In this paper, the road image is obtained by vision sensor and the lane parameters are estimated using image processing and Kalman Filter technique. The active-steering controller is designed to prevent the lane departure. The developed active-steering controller can be realized by steer-by-wire actuator. The lane-sensing algorithm and active-steering controller are implemented into the steering HILS(Hardware-In-the-Loop Simulation) and their performance is evaluated with a human driver in the loop.
We propose an architecture that reduces the power consumption and active area of such a modulator through a reduction in the number of active components and a simplification of the topology. The proposed architecture reduces the power consumption and active area by reducing the number of active components and simplifying the modulator topology. A novel second-order loop filter that uses a single operational amplifier resonator reduces the number of active elements and enhances the controllability of the transfer function. A trapezoidal-shape half-delayed return-to-zero feedback DAC eliminates the loop-delay compensation circuitry and improves pulse-delay sensitivity. These simple features of the modulator allow higher frequency operation and more design flexibility. Implemented in a 130 nm CMOS technology, the prototype modulator occupies an active area of $0.098mm^2$ and consumes 5.23 mW power from a 1.2 V supply. It achieves a dynamic range of 62 dB and a peak SNDR of 60.95 dB over a 15 MHz signal bandwidth with a sampling frequency of 780 MHz. The figure-of-merit of the modulator is 191 fJ/conversion-step.
A phase-locked loop control system designed by using the linear quadratic regulator approach is presented in this paper. The system thus designed is optimal system when system is in locked state and the parameter value of loop filter which is an active PI filter can be obtained easily. By considering the structure of loop filter of phase-locked loop is included in the process to be controlled, a type 1 servo system can be constructed when voltage control oscillator is considered as an integrator. The integral gain of the proposed system obtained by linear quadratic regulator approach can be used as an optimal value to design the parameter of loop filter. The implemented result in controlling the second-order lag pressure process by using the proposed scheme show that the system response is fast with no overshoot and no steady-state error. Furthermore, the experimental results are also shown in term of output disturbance effect rejection, tracking and process parameter changed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.