• Title/Summary/Keyword: active inductor

Search Result 163, Processing Time 0.019 seconds

Design of active beam steering antenna mounted on LEO small satellite (저궤도 소형위성 탑재용 빔 조향 능동 다이폴 안테나 설계)

  • Jeong, Jae-Yeop;Park, Jong-Hwan;Woo, Jong-Myung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.197-203
    • /
    • 2016
  • In this paper, the dipole antenna that can control a beam steering were designed for attaching on LEO(Low Earth Orbit) small satellite. The proposed antenna was based on Yagi-Uda antenna. The parasitic element was proposed as a T-shape. Depending on the state of open or short at the end of a vertical element, we can choose a characteristic of the parasitic element with fixing a vertical element length of the parasitic element. Using this characteristic, we designed the director element and reflector element. The proposed antenna was designed to receive UHF 436.5 MHz. Antenna gain was chosen by link budget between one satellite and the other satellite or between the satellite and the ground station. By changing a vertical element length which is the largest variable that chooses an antenna characteristic, we confirmed that ${\lambda}/2$ length transformer has a result that improve 0.5 dB in comparison ${\lambda}/4$ length transformer from maximum gain direction. In production, we made an on/off switch composed of a diode, capacitor, and inductor control an open and short at the end of the parasitic element. As a result, the gain of antenna used in a link between one satellite and the other satellite had average 5.92 dBi. And the gain of antenna used in a link between the satellite and the ground station had average 0.99 dBi.

Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits (션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어)

  • 문성환;김승조
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.50-59
    • /
    • 2000
  • In this paper, two methods to suppress flutter of the composite panel are examined. First, in the active control method, a controller based on the linear optimal control theory is designed and control input voltage is applied on the actuators and a PZT is used as actuator. Second, a new technique, passive suppression scheme, is suggested for suppression of the nonlinear panel flutter. In the passive suppression scheme, a shunt circuit which consists of inductor-resistor is used to increase damping of the system and as a result the flutter can be attenuated. A passive damping technology, which is believed to be more robust suppression system in practical operation, requires very little or no electrical power and additional apparatuses such as sensor system and controller are not needed. To achieve the great actuating force/damping effect, the optimal shape and location of the actuators are determined by using genetic algorithms. The governing equations are derived by using extended Hamilton's principle. They are based on the nonlinear von Karman strain-displacement relationship for the panel structure and quasi-steady first-order piston theory for the supersonic airflow. The discretized finite element equations are obtained by using 4-node conforming plate element. A modal reduction is performed to the finite element equations in order to suppress the panel flutter effectively and nonlinear-coupled modal equations are obtained. Numerical suppression results, which are based on the reduced nonlinear modal equations, are presented in time domain by using Newmark nonlinear time integration method.

  • PDF

A Miniaturized 2.5 GHz 8 W GaN HEMT Power Amplifier Module Using Selectively Anodized Aluminum Oxide Substrate (선택적 산화 알루미늄 기판을 이용한 소형 2.5 GHz 8 W GaN HEMT 전력 증폭기 모듈)

  • Jeong, Hae-Chang;Oh, Hyun-Seok;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1069-1077
    • /
    • 2011
  • In this paper, a design and fabrication of a miniaturized 2.5 GHz 8 W power amplifier using selectively anodized aluminum oxide(SAAO) substrate are presented. The process of SAAO substrate is recently proposed and patented by Wavenics Inc. which uses aluminum as wafer. The selected active device is a commercially available GaN HEMT chip of TriQuint company, which is recently released. The optimum impedances for power amplifier design were extracted using the custom tuning jig composed of tunable passive components. The class-F power amplifier are designed based on EM co-simulation of impedance matching circuit. The matching circuit is realized in SAAO substrate. For integration and matching in the small package module, spiral inductors and single layer capacitors are used. The fabricated power amplifier with $4.4{\times}4.4\;mm^2$ shows the efficiency above 40 % and harmonic suppression above 30 dBc for the second(2nd) and the third(3rd) harmonic at the output power of 8 W.