• Title/Summary/Keyword: active inductor

Search Result 163, Processing Time 0.026 seconds

Analysis, Design and Implementation of a New Chokeless Interleaved ZVS Forward-Flyback Converter

  • Taheri, Meghdad;Milimonfared, Jafar;Namadmalan, Alireza;Bayat, Hasan;Bakhshizadeh, Mohammad Kazem
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.499-506
    • /
    • 2011
  • This paper presents an interleaved active-clamping zero-voltage-switching (ZVS) forward-flyback converter without an output choke. The presented topology has two active-clamping circuits with two separated transformers. Because of the interleaved operation of the converter, the output current ripple will be reduced. The proposed converter can approximately share the total load current between the two secondaries. Therefore, the transformer copper loss and the rectifier diodes conduction loss can be decreased. The output capacitor is made of two series capacitors which reduces the peak reverse voltage of the rectifier diodes. The circuit has no output inductor and few semiconductor elements, such that the adopted circuit has a simpler structure, a lower cost and is suitable for high power density applications. A detailed analysis and the design of this new converter are described. A prototype converter has been implemented and experimental results have been recorded with an ac input voltage of 85-135Vrms, an output voltage of 12V and an output current of 16A.

Reactive Power and Soft-Switching Capability Analysis of Dual-Active-Bridge DC-DC Converters with Dual-Phase-Shift Control

  • Wen, Huiqing;Su, Bin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.18-30
    • /
    • 2015
  • This paper focuses on a systematical and in-depth analysis of the reactive power and soft-switching regions of Dual Active Bridge (DAB) converters with dual-phase-shift (DPS) control to achieve high efficiency in a wide operating range. The key features of the DPS operating modes are characterized and verified by analytical calculation and experimental tests. The mathematical expressions of the reactive power are derived and the reductions of the reactive power are illustrated with respect to a wide range of output power and voltage conversion ratios. The ZVS soft-switching boundary of the DPS is presented and one more leg with ZVS capability is achieved compared with the CPS control. With the selection of the optimal operating mode, the optimal phase-shift pair is determined by performance indices, which include the minimum peak or rms inductor current. All of the theoretical analysis and optimizations are verified by experimental tests. The experimental results with the DPS demonstrate the efficiency improvement for different load conditions and voltage conversion ratios.

Parallel Control of Shunt Active Power Filters in Capacity Proportion Frequency Allocation Mode

  • Zhang, Shuquan;Dai, Ke;Xie, Bin;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.419-427
    • /
    • 2010
  • A parallel control strategy in capacity proportion frequency allocation mode for shunt active power filters (APFs) is proposed to overcome some of the difficulties in high power applications. To improve the compensation accuracy and overall system stability, an improved selective harmonic current control based on multiple synchronous rotating reference coordinates is presented in a single APF unit, which approximately implements zero steady-state error compensation. The combined decoupling strategy is proposed and theoretically analyzed to simplify selective harmonic current control. Improved selective harmonic current control forms the basis for multi-APF parallel operation. Therefore, a parallel control strategy is proposed to realize a proper optimization so that the APFs with a larger capacity compensate more harmonic current and the ones with a smaller capacity compensate less harmonic current, which is very practical for accurate harmonic current compensation and stable grid operation in high power applications. This is verified by experimental results. The total harmonic distortion (THD) is reduced from 29% to 2.7% for a typical uncontrolled rectifier load with a resistor and an inductor in a laboratory platform.

Characteristics Analysis of the CM and DM Noise Separator in EMI (EMI의 CM과 DM 성분 분리기의 특성 분석)

  • Park, Chan-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.49-55
    • /
    • 2016
  • To separate the CM and DM noise in the EMI generated in various electrical electronic systems, passive and active separators have been researched. These separators are an important part of an effective active EMI-filter. The passive separator has some advantages, in that it is easy to realize at a low price and its structure is very simple. However, its major drawback is that its accurate inductor realization and accurate core selection are very difficult. The active separator is smaller in size and more accurate, but its main drawback is that an op-amp which has a broad band frequency response is necessary, its cost is high, and a DC power circuit is required. This paper compares the characteristics of EMI filters which apply the existing passive separator and proposed active separator. It was concluded that an active separator is needed for expensive and accurate equipment, whereas a passive separator is sufficient for inexpensive and general purpose EMI filters.

A Study on the Two-switch Interleaved Active Clamp Forward Converter (투 스위치 인터리브 액티브 클램프 포워드 컨버터에 관한 연구)

  • Jung, Jae-Yeop;Bae, Jin-Yong;Kwon, Soon-Do;Lee, Dong-Hyun;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.136-144
    • /
    • 2010
  • This paper presents the two-switch interleaved active clamp forward converter, which is mainly composed of two active clamp forward converters. Only two switches are required, and each one is the auxiliary switch for the other. So, the circuit complexity and cost are reduced and control is more simple. An additional resonant inductance is employed to achieve ZVS(Zero-Voltage-Switching) during the dead times. Interleaved output inductor currents diminish the voltage and current ripple. Accordingly, the smaller output filter and capacitors lower the converter volume. This research proposed the Two-switch interleaved Active Clamp Forward Converter characteristic. The principle of operation, feature and design considerations is illustrated and the validity of verified through the experiment with a 160[W] based experimental circuit.

Two-Switch Auxiliary Resonant DC Link Snubber-Assisted Three-Phase Soft Switching PWM Sinewave Power Conversion System with Minimized Commutation Power Losses

  • Nagai, Shinichiro;Sato, Shinji;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.249-258
    • /
    • 2003
  • This paper presents a high-efficient and cost effective three-phase AC/DC-DC/AC power conversion system with a single two-switch type active Auxiliary Resonant DC Link (ARDCL) snubber circuit, which can minimize the total power dissipation. The active ARDCL snubber circuit is proposed in this paper and its unique features are described. Its operation principle in steady-state is discussed for the three phase AC/DC-DC/AC converter, which is composed of PWM rectifier as power factor correction (PFC) converter, sinewave PWM inverter. In the presented power converter system not only three-phase AC/DC PWM rectifier but also three-phase DC/AC inverter can achieve the stable ZVS commutation for all the power semiconductor devices. It is proved that the proposed three-phase AC/DC-DC/AC converter system is more effective and acceptable than the previous from the cost viewpoint and high efficient consideration. In addition, the proposed two-switch type active auxiliary ARDCL snubber circuit can reduce the peak value of the resonant inductor injection current in order to maximize total system actual efficiency by using the improved DSP based control scheme. Moreover the proposed active auxiliary two-switch ARDCL snubber circuit has the merit so that there is no need to use any sensing devices to detect the voltage and current in the ARDCL sunbber circuit for realizing soft-switching operation. This three-phase AC/DC-DC/AC converter system developed for UPS can achieve the 1.8% higher efficiency and 20dB lower conduction noise than those of the conventional three-phase hard-switching PWM AC/DC-DC/AC converter system. It is proved that actual efficiency of the proposed three-phase AC/DC-DC/AC converter system operating under a condition of soft switching is 88.7% under 10kw output power.

A Design Method of Transformer Turns Ratio with the Loss Components Analysis of an Isolated Bidirectional DC-DC Converter (절연형 양방향 DC-DC 컨버터의 손실 성분 분석을 통한 변압기 권선비 설계 방법)

  • Jung, Jae-Hun;Kim, Hak-Soo;Nho, Eui-Cheol;Kim, Heung-Geun;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.434-441
    • /
    • 2016
  • This paper deals with transformer turns ratio design with the consideration of loss minimization in isolated bidirectional DC-DC converter. Generally, the rms value of current, magnitude of current at switching instance, and duty ratio of a converter vary according to the turns ratio of an isolation transformer in the converter under the same voltages and output power level. Therefore, the transformer turns ratio has an effect on the total loss in a converter. The switching and conduction losses of IGBTs and MOSFETs consisting of dual-active bridge converter are analyzed, and iron and copper losses in an isolation transformer and inductor are calculated. Total losses are calculated and measured in cases of four different transformer turns ratios through simulation and experiment with 3-kW converter, and an optimum turns ratio that provides minimum losses is found. The usefulness of the proposed transformer turns ratio design approach is verified through simulation and experimental results.

Minimize Reactive Power Losses of Dual Active Bridge Converters using Unified Dual Phase Shift Control

  • Wen, Huiqing;Su, Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.654-664
    • /
    • 2017
  • This paper proposed an unified dual-phase-shift (UDPS) control for dual active bridge (DAB) converters in order to improve efficiency for a wide output power range. Different operating modes of UDPS are characterized with respect to the reactive current distribution. The proposed UDPS has the same output power capability with conventional phase-shift (CPS) method. Furthermore, its implementation is simple since only the change of the leading phase-shift direction is required for different operating power range. The proposed UDPS control can minimize both the inductor rms current and the circulating reactive current for various voltage conversion ratios and load conditions. The optimal phase-shift pairs for two bridges of DAB converter are derived with respect to the comprehensive reactive power loss model, including the reactive components delivered from the load and back to the source. Simulation and experimental results are illustrated and explained with details. The effectiveness of the proposed method is verified in terms of reactive power losses minimization and efficiency improvement.

Characteristics analysis of single-phase high power factor PWM boost rectifier (단상 고역률 PWM 승압형 정류기의 특성해석)

  • Kim, J.Y.;Mun, S.P.;Suh, K.Y.;Kim, Y.M.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1209-1210
    • /
    • 2006
  • This paper presents a single phase high power factor PWM boost rectifier featuring soft commutat -ion of the active switches at zero current. It incorporates the most desirable properties of conventional PWM and soft switching resonant techniques. The input current shaping is achieved with average current mode control and continuous inductor current mode. This new PWM converter provides zero current turn on and turn off of the active switches, and it is suitable for high power applications employing IGBT's. The principle of operation, the theoretical analysis, a design example, and experi -mental results from a laboratory prototype rated at 1.6[kW] with 400[Vdc] output voltage are presented. The measured efficiency and the power factor were 96.2[%] and 0.99[%], respectively, with an input current THD equal to 3.94[%], for an input voltage with THD equal to 3.8[%], at rated load.

  • PDF

The 1.6[kW] Class Single Phase ZCS-PWM High Power Factor Boost Rectifier (1.6[kW]급 단상 ZCS-PWM HPF 승압형 정류기)

  • Mun, S.P.;Kim, S.I.;Yun, Y.T.;Kim, Y.M.;Lee, H.W.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1169-1171
    • /
    • 2003
  • This paper presents a 1.6[kW]class single phase high power factor(HPF) pulse width modulation(PWM) boost rectifier featuring soft commutation of the active switches at zero current. It incorporates the most desirable properties of conventional PWM and soft switching resonant techniques. The input current shaping is achieved with average current mode control and continuous inductor current mode. This new PWM converter provides zero current turn on and turn off of the active switches, and it is suitable for high power applications employing insulated gate bipolar transistors(IGBT'S). The principle of operation, the theoretical analysis, a design example, and experimental results from laboratory prototype rated at 1.6[kW] with 400[Vdc] output voltage are presented. The measured efficiency and the power factor were 96.2[%] and 0.99[%], respectively, with an input current Total Harmonic Distortion(THD) equal to 3.94[%], for an input voltage with THD equal to 3.8[%], at rated load.

  • PDF