• Title/Summary/Keyword: active flow control

Search Result 324, Processing Time 0.028 seconds

Analysis and active control for wind induced vibration of beam with ACLD patch

  • Li, Jinqiang;Narita, Yoshihiro
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.399-417
    • /
    • 2013
  • The structural vibration suppression with active constrained layer damping (ACLD) was widely studied recently. However, the literature seldom concerned with the vibration control on flow-induced vibration using active constrained layer. In this paper the wind induced vibration of cantilevered beam is analyzed and suppressed by using random theory together with a velocity feedback control strategy. The piezoelectric material and frequency dependent viscoelastic layer are used to achieve effective active damping in the vibration control. The transverse displacement and velocity in time and frequency domains, as well as the power spectral density and the mean-square value of the transverse displacement and velocity, are formulated under wind pressure at variable control gain. It is observed from the numerical results that the wind induced vibration can be significantly suppressed by using a small outside active voltage on the constrained layer.

Active Flow Control on a UCAV Planform Using Synthetic Jets

  • Lee, Junhee;Lee, Byunghyun;Kim, Minhee;Kim, Chongam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.315-323
    • /
    • 2016
  • This paper deals with experimental investigation of active flow control via synthetic jets using an unmanned combat air vehicle (UCAV) planform. Fourteen arrays of synthetic jets, mounted along both leading edges, were fully or partially activated to increase aerodynamic efficiency and reduce pitch-up moment. The measurements were carried out using a six-component external balance, a pressure scanner, and tuft flow visualization. It was observed that aerodynamic efficiency (L/D) and pitching moment were clearly affected by the location of jets. In particular, inboard and outboard actuation could effectively increase L/D. Moreover, inboard actuation showed a reduction in the pitch-up, even more than that generated by the full actuation. These results suggest that inboard actuation not only effectively increases L/D but also reduces the pitch-up using only a few actuators.

Numerical Study on the Active Control of Aerodynamic Properties of 2 - D Square Prism (2차원 각주의 공력특성 능동제어에 관한 수치해석 연구)

  • 이영호;김춘식;조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.33-44
    • /
    • 1993
  • Active control of a flow field is essential to design efficient parts or elements relating to fluid machineries. The present study is aimed to suggest a new discretization technique of the convection term by renewing the non-conservative equation found in SOLA-VOF into a conservative one. And, as an application, flow characteristics are investigated by adjusting the backward ejecting velocity of 2-D square prism to control the aerodynamic properties. Strouhal number, drag and lift coefficient are compared in terms of various ejecting velocity. Among the results, the transient weak fluctuation of the lift and drag coefficient when the ejecting velocity equals channel inlet velocity is remarkably noticed.

  • PDF

Development of a Direct-Operated Proportional Pressure Reducing Valve for Low-Band Type Active Suspension Control (Low-Band Type 능동형 현가제어를 위한 직동식 전자비례 감압밸브의 개발)

  • 홍예선;류시복;김영식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.75-84
    • /
    • 1994
  • In general direct-operated pressure reducing valves have been gardly applied to a dynamic control system such as active suspension control because of their poor control stability. But they are more robust than pilot-operated type and do not need pilot control flow. In this paper development of a new direct-operated proportional pressure reducing valve for low-band type active suspension control is reported. By means of a special damper directly linked to the valve spool, the control stability could be effectively improved without drawback in response time. The linearity error was less than $\pm$3.5%. Applied to an experimental active suspension system the new valve showed the $-90^{\circ}$ phase delay at 4Hz with 20% sinusoidal signal input and could control the suspension system with almost same performance as that with a pilot-operated type valve.

  • PDF

A Study on Flow Characteristics of Fountain-pen Nano-Lithography with Active Membrane Pumping (능동적 박막 펌핑에 의한 파운틴 펜 나노 리소그래피 유동 특성에 관한 연구)

  • Lee Jin-Hyoung;Lee Young-Kwan;Lee Sung-Kun;Lee Suk-Han;Kim Youn-Jea;Kim Hun-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.722-730
    • /
    • 2006
  • In this study, the flow characteristics of a FPN (Fountain Pen Nano-Lithography) using active membrane pumping are investigated. The FPN has integrated chamber, micro channel, and high capacity reservoir for continuous ink feed. The most important aspect in this probe provided control of fluid injection using active membrane pumping in chamber. The flow rates in channel by capillary force are theoretically analyzed, including the control of the mass flow rates by the deflection of the membrane. The above results are compared with the numerical simulations that calculated by commercial code, FLUENT. The velocity of the fluid in micro channel shows linear behaviors. And the mass flows are proportional to the second order function of the pumping pressure that is imposed to the membrane.

A Study on Dynamic Analysis of Nano Fountain Pen (나노 파운틴펜의 동적해석에 관한 연구)

  • Lee, Young-Kwan;Kim, Hun-Mo;Kim, Youn-Jae;Lee, Suk-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.922-929
    • /
    • 2006
  • In this study, flow characteristics of the FPN (Fountain Pen Nano-Lithography) using active membrane pumping are investigated. This FPN has integrated chamber, micro channel, and high capacity reservoir for continuous ink feed. The most important aspect in this probe provided control of fluid injection using active membrane pumping in chamber. The flow rates in channel by capillary force are theoretically analyzed, including the control of mass flow rates by deflection of membrane. The above results are compared with numerical simulations that calculated by commercial code, FLUENT. The velocity of fluid in micro channel shows linear behaviors. And the mass flows are proportional to the second order function of pumping pressure that is imposed to membrane.

  • PDF

A Study on the Optimum Operational Control of Power System (전렬계통의 합리적 운용제어에 관한 연구)

  • 정재길;박영문
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.10
    • /
    • pp.410-422
    • /
    • 1984
  • This paper presents a new practical method for optimal active and reactive power control for the economic operation in electrical power system, and the programs are developed for digital computer solution. The major features and techniques of this paper are as follows: 1) The method is presented for finding the equivalent active power balance equation applying the sparse Jacobian matrix of power flow equation instead of using B constant as active power balance equation considering transmission loss, and thus for determining directly optimal active power allocation berween generator unitw satisfying the equality and inequality constraints. 2) The method is proposed for solving directly the optimum economim dispatch problem without using gradient method and penalty function for both active and reactive power control. As a result, the computing time are reduced and convergence characteristic is remarkably improved. 3) Unlike most of conventional methods which adopt the transmission loss as a objective function for reactive power control, the total fuel cost of themal power plant is adopted as objective function for both active and reactive power control. consequently, more reasonable and economic profit can be achieved.

Auto Flow Rate Regulating System Synchronized with Room Control (난방시 실별 연동형 세대자동유량제어 시스템)

  • Kim, Young-Kyun;Kim, Nam-Gun;Seo, Bum-Suk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.77-82
    • /
    • 2009
  • If we can supply accurate minute flow rate to the households, we can solve many problems that are occurring in consequences of uncontrolled flow rate for the households. Therefore, this paper presents an innovative solution to the source of the problems by illustrating how we can control the flow rate to the household. This paper proves such problems even can be solved in a case when there is a room turned off the heating.

  • PDF

Power Flow Control of Modular Multilevel Converter based on Double-Star Bridge Cells Applying to Grid Connection

  • Hamasaki, Shin-Ichi;Okamura, Kazuki;Tsuji, Mineo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.246-253
    • /
    • 2013
  • The Modular Multilevel Converter (MMC) with full bridge cells is available for utility interactive inverter in high voltage line. When it is interconnected with power line, it is possible to control the active power flow in order to supply or charge the power in the line. This research applied the MMC to grid connection system of distributed generator and a power flow control for the MMC is investigated. Theory of power flow between the MMC and the power line is described and control method of power flow and capacitor voltages on arm cells for the MMC are proposed. And effectiveness of the proposed control method is presented by simulation.

Active Noise Control in a Circular Duct Using Smart Foam (원형 덕트 내에서 스마트 폼을 이용한 능동 소음 제어)

  • Han, Je-Heon;Kim, Pyo-Jae;Kang, Yeon-June
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.641-645
    • /
    • 2001
  • In this paper, it is discussed that active noise control in a circular duct using smart foam. Firstly, it is demonstrated that the potential of the conventional smart foam, proposed by Fuller, for active noise control in a duct. Conventional smart foam is not applicable to active noise control in a duct having flow. Thus, this paper presents a ring-type smart foam as an alternative. The ring-type smart foam consists of polyurethane acoustic foam of lining shape and PVDF film embedded in the foam. The embedded PVDF element acts as an actuator to reduce noise at lower frequencies and the foam absorbs noise at higher frequencies. A filtered-x LMS controller is used to minimize the signal from the error microphone. Experiments are executed to reduce broadband and tonal noise.

  • PDF