• Title/Summary/Keyword: active finger actuation

Search Result 2, Processing Time 0.013 seconds

A Novel Nonmechanical Finger Rehabilitation System Based on Magnetic Force Control

  • Baek, In-Chul;Kim, Min Su;Kim, Sung Hoon
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.155-161
    • /
    • 2017
  • This paper presents a new nonmechanical rehabilitation system driven by magnetic force. Typically, finger rehabilitation mechanisms are complex mechanical systems. The proposed method allows wireless operation, a simple configuration, and easy installation on the hand for active actuation by magnetic force. The system consists of a driving coil, driving magnets (M1), and auxiliary magnets (M2 and M3), respectively, at the finger, palm, and the center of coil. The magnets and the driving coil produce three magnetic forces for an active motions of the finger. During active actuations, magnetic attractive forces between M1 and M2 or between M1 and M3 enhance the flexion/extension motions. The proposed system simply improves the extension motion of the finger using a magnetic system. In this system, the maximum force and angular variation of the extension motion were 0.438 N and $49^{\circ}$, respectively. We analyzed the magnetic interaction in the system and verified finger's active actuation.

Designing a Magnetically Controlled Soft Gripper with Versatile Grasping Based on Magneto-Active Elastomer

  • Li, Rui;Li, Xinyan;Wang, Hao;Tang, Xianlun;Li, Penghua;Shou, Mengjie
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.688-700
    • /
    • 2022
  • A composite bionic soft gripper integrated with electromagnets and magneto-active elastomers is designed by combining the structure of the human hand and the snake's behavior of enhancing friction by actively adjusting the scales. A silicon-based polymer containing magnetized hard magnetic particles is proposed as a soft finger, and it can be reversibly bent by adjusting the magnetic field. Experiments show that the length, width, and height of rectangular soft fingers and the volume ratio of neodymium-iron-boron have different effects on bending angle. The flexible fingers with 20 vol% are the most efficient, which can bend to 90° when the magnetic field is 22 mT. The flexible gripper with four fingers can pick up 10.51 g of objects at the magnetic field of 105 mT. In addition, this composite bionic soft gripper has excellent magnetron performance, and it can change surface like snakes and operate like human hands. This research may help develop soft devices for magnetic field control and try to provide new solutions for soft grasping.