• 제목/요약/키워드: active caspase-3

검색결과 131건 처리시간 0.023초

국산 한약재로 이용되는 약용식물의 NCI-H1229 인간 폐암 세포주에 대한 성장 억제효과 분석 (Screening for Growth Inhibitory Effects of Medicinal Plants Used in Traditional Korean Medicine in NCI-H1229 Human Lung Cancer Cells)

  • 노종현;김아현;정호경;이무진;장지훈;이기호;이현주;박호;조현우
    • 한국약용작물학회지
    • /
    • 제26권4호
    • /
    • pp.281-290
    • /
    • 2018
  • Background: Lung cancer, the most common malignant disease worldwide, is the predominant cause of cancer deaths, particularly amongst men. Therefore, various researchers have focused on the growth inhibitory effects of medicinal plants used in traditional Korean medicine. This study aimed to investigate the growth inhibitory effects of ethanol extracts of Rubiae radix, Inulae flos, Nelumbinis receptaculum, Astilbe radix, and Lagerstroemia flos on NCI-H1229 cells. Method and Results: The viability of NCI-H1229 cells was evaluated in vitro using an MTS assay. Treatment with the ethanol extracts of the selected medicinal plants at $500{\mu}g/m{\ell}$ reduced NCI-H1229 cell viability and increased apoptotic cell death and caspase-3 activation. In addition, treatment with ethanol extracts of Inulae flos and Astilbe radix increases DNA fragmentation, as measured by the TUNEL assay. Conclusions: These results indicated that ethanol extracts of Rubiae radix, Inulae flos, Nelumbinis receptaculum, Astilbe radix, and Lagerstroemia flos exhibited growth inhibitory effects, inducing apoptotic cell death, DNA fragmentation and caspase-3 activation in NCI-H1229 cells. Therefore, these medicinal plant extracts may be used in the development of natural medicines to inhibit the growth of lung cancers. However, further study is needed to determine the active ingredients of the ethanol extracts from medicinal plants that are reposible for the inhibitory effect on lung cancer cell grwoth.

Curcumin represses lipid accumulation through inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis in porcine subcutaneous preadipocytes

  • Pan, Shifeng;Chen, Yongfang;Zhang, Lin;Liu, Zhuang;Xu, Xingyu;Xing, Hua
    • Animal Bioscience
    • /
    • 제35권5호
    • /
    • pp.763-777
    • /
    • 2022
  • Objective: Excessive lipid accumulation in adipocytes results in prevalence of obesity and metabolic syndrome. Curcumin (CUR), a naturally phenolic active ingredient, has been shown to have lipid-lowering effects. However, its underlying mechanisms have remained largely unknown. Therefore, the study aims to determine the effect of CUR on cellular lipid accumulation in porcine subcutaneous preadipocytes (PSPA) and to clarify novel mechanisms. Methods: The PSPA were cultured and treated with or without CUR. Both cell counting Kit-8 and lactate dehydrogenase release assays were used to examine cytotoxicity. Intracellular lipid contents were measured by oil-red-o staining extraction and triglyceride quantification. Apoptosis was determined by flow cytometry and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-nick end labelling assay. Adipogenic and apoptosis genes were analyzed by quantitative polymerase chain reaction and Western blot. Results: The CUR dose-dependently reduced the proliferation and lipid accumulation of PSPA. Noncytotoxic doses of CUR (10 to 20 μM) significantly inhibited extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and expression of adipogenic genes peroxisome proliferation-activity receptor-γ (PPAR-γ), CCAAT/enhancer binding protein-α, sterol regulatory element-binding protein-1c, adipocyte protein-2, glucose transporter-4 as well as key lipogenic enzymes fatty acid synthase and acetyl-CoA carboxylase, while ERK1/2 activation significantly reversed CUR-reduced lipid accumulation by increasing PPAR-γ. Furthermore, compared with differentiation induced media treated cells, higher dose of CUR (30 μM) significantly decreased the expression of AKT and B-cell lymphoma-2 (BCL-2), while increased the expression of BCL-2-associated X (BAX) and the BAX/BCL-2 expression ratio, suggesting triggered apoptosis by inactivating AKT and increasing BAX/BCL-2 ratio and Caspase-3 expression. Moreover, AKT activation significantly rescued CUR inhibiting lipid accumulation via repressing apoptosis. Conclusion: These results demonstrate that CUR is capable of suppressing differentiation by inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis via decreasing AKT and subsequently increasing BAX/BCL-2 ratio and Caspase-3, suggesting that CUR provides an important method for the reduction of porcine body fat, as well as the prevention and treatment of human obesity.

Sequestration of sorcin by aberrant forms of tau results in the defective calcium homeostasis

  • Kim, Song-In;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권4호
    • /
    • pp.387-397
    • /
    • 2016
  • Neurofibrillary tangles (NFTs) of microtubule-associated protein tau are a pathological hallmark of Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress has been known to be involved in the pathogenesis of AD. However, the exact role of ER stress in tau pathology has not yet been clearly elucidated. In present study, the possible relationship between tau pathology and ER stress was examined in terms of sorcin, which is a calcium binding protein and plays an important role in calcium homeostasis. Our previous yeast two hybrid study showed that sorcin is a novel tau interacting protein. Caspase-3-cleaved tau (T4C3) showed significantly increased tau-sorcin interaction compared to wild type tau (T4). Thapsigargin-induced ER stress and co-expression of constitutively active $GSK3{\beta}$ ($GSK3{\beta}-S9A$) also exhibited significantly increased tau-sorcin interactions. T4C3-expressing cells showed potentiated thapsigargin -induced apoptosis and disruption of intracellular calcium homeostasis compared to T4-expressing cells. Overexpression of sorcin significantly attenuated thapsigargin-induced apoptosis and disruption of calcium homeostasis. In contrary, siRNA-mediated knock-down of sorcin showed significantly increased thapsigargin-induced apoptosis and disruption of calcium homeostasis. These data strongly suggest that sequestration of sorcin by aberrant forms of tau compromises the function of sorcin, such as calcium homeostasis and cellular resistance by ER stress, which may consequently result in the contribution to the progression of AD.

산국 잎과 줄기의 유효성분 분리 및 특성 연구 (Isolation and Characterization of Constituent Compounds from Leaves and Stems of Chrysanthemum boreale Makino)

  • 박숙자;박문기;이종록
    • 한국환경과학회지
    • /
    • 제28권11호
    • /
    • pp.993-1004
    • /
    • 2019
  • Chrysanthemum boreale Makino (C. boreale) is widely distributed in Asian countries, and has traditionally been used to treat various inflammatory diseases including bronchitis. In this study, we aimed to isolate biologically active compounds from leaves and stems of C. boreale. Chemical components were purified by column chromatograpy and recyclic HPLC, and characterized from their spectral data (IR, MS, NMR). Biological activity experiments were conducted for Farnesyl-protein transferase (FPTase) activity, apoptosis and nitirc oxide (NO) release. As a results, three sesquiterpene lactones were isolated. Compound 1 (4-methoxy-8-O-acetyl-10-hydroxy-2,11(13)-guaiadiene-12,6-olide) showed strong cytotoxic activities having an average growth inhibition of 50% ($GI_{50}$) value of $1.89{\mu}g/m{\ell}$ against human colon adenocarcinoma cells. Compound 1 also showed a low half maximal inhibitory concentration ($IC_{50}$) value of $10{\mu}g/m{\ell}$ for NO release. In the caspase 3 activity, compound 1 and compound 2 (8-O-(2-carbonyl-2-butyl)-3,10-dihydroxy-4,11(13) -guaiadiene-12,6-olide) exhibited 94% and 90% apoptosis inhibition activity, respectively. Compound 3 (4,8-O-diacetyl -10-hydroxy-2(3),11(13)-guaiadiene-12,6-olide) showed a strong inhibitory effect on FPTase activity with 90% inhibitory activity at a concentration of $100{\mu}g/m{\ell}$. These results clearly show the presence of lactone compounds in the leaves and stems, which may partially contribute to the pharmacological activity of C. boreale.

Combination of Nimbolide and TNF-α-Increases Human Colon Adenocarcinoma Cell Death through JNK-mediated DR5 Up-regulation

  • Boonyarat, Chantana;Yenjai, Chavi;Reubroycharoen, Prasert;Waiwut, Pornthip
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권5호
    • /
    • pp.2637-2641
    • /
    • 2016
  • Tumor necrosis factor ($TNF-{\alpha}$), an inflammatory cytokine that plays an important role in the control of cell proliferation, differentiation, and apoptosis, has previously been used in anti-cancer therapy. However, the therapeutic applications of $TNF-{\alpha}$ are largely limited due to its general toxicity and anti-apoptotic influence. To overcome this problem, the present study focused on the effect of active constituents isolated from a medicinal plant on $TNF-{\alpha}$-induced apoptosis in human colon adenocarcinoma (HT-29) cells. Nimbolide from Azadirachta indica was evaluated for cytotoxicity by methyl tetrazolium 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay and phase contrast microscopy. Effects on apoptotic signaling proteins were investigated using Western blot analysis. Nimbolide showed cytotoxicity against HT-29 cells that was significantly different from the control group (p<0.01), a concentration of $10{\mu}M$ significantly inducing cell death (p<0.01). In combination with $TNF-{\alpha}$, nimbolide significantly enhanced-induced cell death. In apoptotic pathway, nimbolide activated c-Jun N-terminal kinase (JNK) phosphorylation, BH3 interacting-domain death agonist (Bid) and up-regulated the death receptor 5 (DR5) level. In the combination group, nimbolide markedly sensitized $TNF-{\alpha}$-induced JNK, Bid, caspase-3 activation and the up-regulation of DR5. Our findings overall indicate that nimbolide may enhance $TNF-{\alpha}$-mediated cellular proliferation inhibition through increasing cell apoptosis of HT-29 cells by up-reglation of DR5 expression via the JNK pathway.

오수유의 메탄올 추출 농도에 따른 항산화와 AGS세포에 대한 독성 효과 (Effect of Methanol Extract Concentration on the Anti-oxidative Activity and Toxicity of Evodiae Fructus to AGS Cells)

  • 양지영;변휘용;김진우;김사현;이평재
    • 한국식생활문화학회지
    • /
    • 제35권4호
    • /
    • pp.400-405
    • /
    • 2020
  • Evodiae Fructus is the dried unripe fruit of Evodia rutaecarpa, and has traditionally been used for treating stomachache and diarrhea. Evodiamine and rutaecarpine, the major biologically active compounds of Evodiae Fructus, are reported to have anti-oxidative and anti-inflammatory effects, as well as inhibit proliferation and metastasis of various cancer cells. The current study investigates the anti-oxidative and anti-cancer effects of the Evodiae Fructus extract, considering varying concentrations of methanol extraction (40, 80, and 95%). High contents of total phenolic compounds were determined in the order of extracts 80, 95, and 40%. Evaluating contents of the 95, 80, and 40% extracts revealed 36.77, 7.29, and 1.86 ㎍/mg evodiamine, respectively, and 53.02, 17.16, and 3.79 ㎍/mg rutaecarpine, respectively, with the highest content of both compounds obtained in the 95% extract. DPPH radical scavenging activity was observed to be inversely proportional to the contents of total phenolic compounds, with decreasing SC50 values obtained in the order 80, 95, and 40% extract. The 95 and 80% extracts exerted toxicity to AGS gastric cancer cells, but the 40% extract was non-toxic. Evodiamine is a known anti-cancer agent, and could be responsible for the observed toxicity. Cleavage of PARP, and Caspase-3, -7, -8 and -9 was observed in the 95% extract-treated AGS cells, indicating that cell toxicity exerted by the 95% extract could be attributed to apoptosis.

Autophagy Is a Potential Target for Enhancing the Anti-Angiogenic Effect of Mebendazole in Endothelial Cells

  • Sung, So Jung;Kim, Hyun-Kyung;Hong, Yong-Kil;Joe, Young Ae
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.117-125
    • /
    • 2019
  • Mebendazole (MBZ), a microtubule depolymerizing drug commonly used for the treatment of helminthic infections, has recently been noted as a repositioning candidate for angiogenesis inhibition and cancer therapy. However, the definite anti-angiogenic mechanism of MBZ remains unclear. In this study, we explored the inhibitory mechanism of MBZ in endothelial cells (ECs) and developed a novel strategy to improve its anti-angiogenic therapy. Treatment of ECs with MBZ led to inhibition of EC proliferation in a dose-dependent manner in several culture conditions in the presence of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) or FBS, without selectivity of growth factors, although MBZ is known to inhibit VEGF receptor 2 kinase. Furthermore, MBZ inhibited EC migration and tube formation induced by either VEGF or bFGF. However, unexpectedly, treatment of MBZ did not affect FAK and ERK1/2 phosphorylation induced by these factors. Treatment with MBZ induced shrinking of ECs and caused G2-M arrest and apoptosis with an increased Sub-G1 fraction. In addition, increased levels of nuclear fragmentation, p53 expression, and active form of caspase 3 were observed. The marked induction of autophagy by MBZ was also noted. Interestingly, inhibition of autophagy through knocking down of Beclin1 or ATG5/7, or treatment with autophagy inhibitors such as 3-methyladenine and chloroquine resulted in marked enhancement of anti-proliferative and pro-apoptotic effects of MBZ in ECs. Consequently, we suggest that MBZ induces autophagy in ECs and that protective autophagy can be a novel target for enhancing the anti-angiogenic efficacy of MBZ in cancer treatment.

소풍탕(疎風湯)이 Glutamate에 의한 C6 Glial Cell의 Apoptosis에 미치는 영향 (Effect of Sopung-tang on Glutamate-Induced Apoptosis in C6 Glial Cells)

  • 정승원;최철원;김봉상;문병순
    • 동의생리병리학회지
    • /
    • 제22권6호
    • /
    • pp.1423-1430
    • /
    • 2008
  • The water extract of Sopung-tang(SPT) has been traditionally used for treatment of psycologic disease and brain damage in oriental medicine. However, little is known about the mechanism by which the water extract of SPT rescues cells from these disease. Therefore, this study was designed to investigate the effect of SPT on the glutamate-induced toxicity of rat C6 glial cells. SPT have protective effects in glutamate-induced toxicity, which was revealed as apoptosis characterized by chromatic condensation and fragmentation and the loss of mitochondrial membrane potential in C6 glial cells. Also, SPT have inhibited the active form of caspase-3 and PARP and significantly protected the apoptotic phenomena by glutamate toxicity in C6 glial cells. However, SPT significantly recovered the depletion of GSH and inhibited the generation of ROS by glutamate in C6 glial cells. In addition, both SPT and antioxidants such as GSH and NAC protected the glutamate-induced cytotoxicity in C6 glial cells, indicating that SPT possibly have antioxidative effect. Specially, SPT were showed transcriptional factor significantly increased the activation of NF-${\kappa}B$ using the analysis of NF-${\kappa}B$ luciferase reporter system in C6 glial cells. These NF-${\kappa}B$ activation protected cells from glutamate-induced toxicity to generate the heme oxygenase-1(HO-1). Taken together, we suggest that SPT have protective effects in glutamate-induced toxicity via a antioxidative mechanism.

Overexpression of Anti-apoptotic Molecules and Sax Translocation to Mitochondria by Pharbitis Nil Extracts in AGS

  • Ko Seong-Gyu
    • 동의생리병리학회지
    • /
    • 제18권6호
    • /
    • pp.1843-1849
    • /
    • 2004
  • Conventional medicines have usually sorted to a number of treatments such asoperation, radiotherapy, and chemotherapy. The existing anti-cancer agents, designed to eradicate cancer cells, have strong toxicities, also with leading to harmful side effects. Recently, a number of researches on natural products have been actively carried out in efforts to develop new treatments that can decrease side effects or increase anti-cancer effects. We performed this study to understand the molecular basis underlying the antitumor effects of Pharbitis nil, and Plantago asiatica, which have been used for herbal medicinal treatments against cancers in East Asia. We analyzed the effects of these medicinal herbs on proliferation and on expression of cell growth/apoptosis related molecules, with using an AGS gastric cancer cell line. The treatment of Pharbitis nil dramatically reduced cell viabilities in a dose and time-dependent manner, but Plantago asiatica didn't. FACS analysis and Annexin V staining assay also showed that Pharbitis nil induce apoptotic cell death of AGS. Expression analyses via RT-PCR and Western blots revealed that Pharbitis nil didn't increase expression of the p53 and its downstream effector p21/sup wafl/, and that the both increased expression of apoptosis related Sax and cleavage of active caspase-3 protein. We also confirmed the translocation of Sax to mitochondria. Collectively, our data demonstrate that Pharbitis nilinduce growth inhibition and apoptosis of human gastric cancer cells, and these effects are correlated with down- and up-regulation of growth-regulating apoptotic and tumor suppressor genes, respectively.

Conditioned Medium from Dying Smooth Muscle Cell Induced Apoptotic Death

  • Bu, Moon-Hyun;Lee, Kyeong-Ah;Kim, Koan-Hoi;Rhim, Byung-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권6호
    • /
    • pp.315-322
    • /
    • 2005
  • In this study, the authors investigated whether death of vascular smooth muscle cell (VSMC) had a pathological pertinence. Conditioned media obtained from rat aorta smooth muscle cell (SMC) that were induced death by expressing FADD in the absence of tetracycline (FADD-SMC) triggered death of normal SMC. DNA fragmentation and caspase-3 activation were observed in dying SMC by conditioned media. FADD-SMC showed transcriptional activation of tumor necrosis factor $(TNF)-{\alpha}$. Conditioned medium contained $TNF-{\alpha}$, indicating secretion of the cytokine from dying FADD-SMC. It was investigated if secreted $TNF-{\alpha}$ was functional. Conditioned medium activated ERK and p38 MAPK pathways and induced MMP-9 expression, whereas depletion of the cytokine with its soluble receptor (sTNFR) remarkably inhibited induction of MMP-9 by conditioned medium. These findings suggest that $TNF-{\alpha}$ in conditioned medium seems to be active. Then, contribution of $TNF-{\alpha}$ on death-inducing activity of conditioned medium was examined. Depletion of $TNF-{\alpha}$ with soluble $TNF-{\alpha}$ receptor decreased the death activity of conditioned medium by 35%, suggesting that $TNF-{\alpha}$ play a partial role in the death activity. Boiling of medium almost completely abolished the death-inducing activity, suggesting that other heat labile death inducing proteins existed in conditioned medium. Taken together, these results indicate that SMC undergoing death could contribute to inflammation by expressing inflammatory cytokines and pathological complications by inducing death of neighboring cells.