• Title/Summary/Keyword: active beam

Search Result 468, Processing Time 0.023 seconds

Development of Radar Environmental Signals Simulator for Simulating Sub-array Receiving Signals of Active Phased Array Multi-function Radar (능동위상배열 다기능레이다의 부배열 수신신호 모의를 위한 레이다환경신호모의장비 개발)

  • Kim, Gukhyun;Yoo, Kyungjoo;Lee, Kyungmin;Gil, Sungjun;Yang, Eunho;Lee, Kwangchul;Lee, Heeyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.452-458
    • /
    • 2020
  • In this paper, the contents of the development of RESS(Radar Environmental Signals Simulator) for the test of active phased array multi-function radar are described. The developed RESS can simulate multiple target environments, such as target/jamming/missile response/cluster signals, by using received radar operational information and simulated scenario. It can also modulate frequency, phase, gain, timing on all waveforms operated by multi-function radar and simulated two targets and one jamming in the beam. The RESS can be used to perform functional and performance verification of the active phased array multi-function radar with sub-array receiving structures.

Active Shape Control of Composite Beam Using Shape Memory Alloy Actuators (형상기억합금 작동기를 이용한 복합재 보의 능동 형상 제어)

  • Yang, Seung-Man;Roh, Jin-Ho;Han, Jae-Hung;Lee, In
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.18-24
    • /
    • 2004
  • In this paper, active shape control of composite structures actuated by shape memory alloy (SMA) wires is presented. The thermo-mechanical behaviors of SMA wires were experimentally measured. Hybrid composite structures were established by attaching SMA actuators on the surfaces of graphite/epoxy composite beams using bolt-joint connectors. SMA actuators were activated by phase transformation, which induced by temperature rising over austenite finish temperature. In this paper, electrical resistive heating was applied to the hybrid composite structures to activate the SMA actuators. For (aster and more accurate shape/deflection control of the hybrid composite structure, PID feedback controller was designed from numerical simulations and experimentally applied to the SMA actuators.

Adaptive beamforming of triplet arrays for active sonar systems (능동소나 시스템을 위한 삼중 배열의 적응 빔형성)

  • Ahn, Jae-Kyun;Ryu, Yongwoo;Chun, Seung-Yong;Kim, Seongil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.66-72
    • /
    • 2018
  • In this paper, we propose an adaptive beamforming algorithm of triplet arrays for active sonar systems. The proposed algorithm consists of three steps: matched filters, cardioid beamforming, and line array beamforming. First, we apply a matched filter of a transmitted pulse to received individual sensor signals and obtain filterd signals. Then, we perform the fast Fourier transform to the matched filter results, and make a cardioid beam for each triplet data, respectively. Finally, we apply an adaptive beamforming by assuming that the cardioid beams are input signals of a line array. Experimental results demonstrate that the proposed algorithm provides better performances than conventional algorithms.

Vibration Attenuation in Helicopters using an Active Trailing-edge Flap Blade

  • Natarajan, Balakumaran;Eun, WonJong;Shin, SangJoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.347-352
    • /
    • 2013
  • Seoul National University Flap (SNUF) blade is a small-scaled rotor blade incorporating a small trailing-edge flap control surface driven by piezoelectric actuators at higher harmonics for vibration attenuation. Initially, the blade was designed using two-dimensional cross-section analysis and a geometrically exact one-dimensional beam analysis, and material configuration was finalized. Flap deflection angle of ${\pm}45^{\circ}$ was established as the criterion for better vibration reduction performance based on an earlier simulation. Flap linkage mechanism design is carried out and static bench tests are conducted to verify the flap actuation mechanism performance. Different versions of test beds are developed and tested with the flap and chosen APA 200M piezoelectric actuators. Through significant improvements, a maximum deflection of ${\pm}3.7^{\circ}$ was achieved. High frequency experiments are conducted to evaluate the performance and transfer function of the test bed is determined experimentally. As the static tests are almost completed, rotor power required for testing the blade in whirl tower (centrifugal environment) is calculated and further preparations are under way.

  • PDF

Three-dimensional beamforming techniques for LTE-A systems (LTE-A 시스템에서 3 차원 빔포밍 기법 연구)

  • Ji, Hyoungju;Shim, Byonghyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.43-44
    • /
    • 2015
  • LTE-Advanced system has been deployed with 2 and 4 transmission antennas (Tx) while the specification supports up to 8Tx. Due to deployment space, antenna dimension and complexity, the needs of deploying 8Tx system has not been motivated by operators. Recently, three dimensional (3D) beamforming with active antenna has attracted significant attention in the wireless industry. By incorporating 2D active array into LTE-A systems, the system offers freedom in controlling radiation on elevation and horizontal dimension. When the number of antennas increases in the form of 2D arrangement, spatial separation can be realized simultaneously in horizontal and elevation domain and vertical beam-steering can increase SINR of UEs in high floors. In this paper, we study the system operations and implementations for supporting 3D beamforming with 8Tx antennas. In our schemes, by reusing the conventional CSI feedback framework, the system can operate 2D active array without harming the backward compatibility. Evaluation results show that 3D beamforming provides capacity boosting over the conventional 2D beamforming systems while keeping same antenna structure.

  • PDF

Fabrication of Optically Active Nanostructures for Nanoimprinting

  • Jang, Suk-Jin;Cho, Eun-Byurl;Park, Ji-Yun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.393-393
    • /
    • 2012
  • Optically active nanostructures such as subwavelength moth-eye antireflective structures or surface enhanced Raman spectroscopy (SERS) active structures have been demonstrated to provide the effective suppression of unwanted reflections as in subwavelength structure (SWS) or effective enhancement of selective signals as in SERS. While various nanopatterning techniques such as photolithography, electron-beam lithography, wafer level nanoimprinting lithography, and interference lithography can be employed to fabricate these nanostructures, roll-to-roll (R2R) nanoimprinting is gaining interests due to its low cost, continuous, and scalable process. R2R nanoimprinting requires a master to produce a stamp that can be wrapped around a quartz roller for repeated nanoimprinting process. Among many possibilities, two different types of mask can be employed to fabricate optically active nanostructures. One is self-assembled Au nanoparticles on Si substrate by depositing Au film with sputtering followed by annealing process. The other is monolayer silica particles dissolved in ethanol spread on the wafer by spin-coating method. The process is optimized by considering the density of Au and silica nano particles, depth and shape of the patterns. The depth of the pattern can be controlled with dry etch process using reactive ion etching (RIE) with the mixture of SF6 and CHF3. The resultant nanostructures are characterized for their reflectance using UV-Vis-NIR spectrophotometer (Agilent technology, Cary 5000) and for surface morphology using scanning electron microscope (SEM, JEOL JSM-7100F). Once optimized, these optically active nanostructures can be used to replicate with roll-to-roll process or soft lithography for various applications including displays, solar cells, and biosensors.

  • PDF

A Study of T/R Module Output Compensation Method for Active Synthetic Aperture Radar (능동형 SAR 시스템의 송수신 모듈 출력 보정 방법 연구)

  • Yi, Dong-Woo;Lee, Jong-Hwan;Kim, Se-Young;Jeon, Byoung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.955-964
    • /
    • 2010
  • In this paper, a compensation method of the amplitude and phase errors from the T/R(Transmit/Receive) modules in an active SAR(Synthetic Aperture Radar) system is introduced. The errors are defined and classified, and characterized by analyzing the measurement data acquired from the pilot test. To compensate these errors, a control methodology of T/R modules output is proposed. Before the compensation is applied, 16 T/R modules integrated on the active SAR antenna show the amplitude in 28.2~29.0 dBm and the phase in $101.7^{\circ}{\sim}165.2^{\circ}$. After the compensation, the amplitude and phase are distributed in 27.4~28.0 dBm and $116.1^{\circ}{\sim}120.0^{\circ}$ respectively. The antenna beam patterns generated by the array theory with the distributions are compared, and the proposed method is verified as good to apply for the active SAR system.

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON RECIPROCAL ACTION BY TORQUE APPLICATION IN MAXILLARY ARCHWIRE (상악호선에 torque 부여시 나타나는 상반작용에 관한 유한요소법적 연구)

  • Hwang, Chee-Il;Suhr, Cheong-Hoon
    • The korean journal of orthodontics
    • /
    • v.24 no.2
    • /
    • pp.479-508
    • /
    • 1994
  • This study was designed to investigate the reciprocal movement which was derived form application of active torque in ideal archwire by computer-aided three-dimensional finite element analysis of maxillary teeth and surrounding periodontal ligament composed of 2617 elements and 3725 nodes. Ideal archwire model was also made using the beam elements and the contact between the wire and the bracket slot was made using the gap element. In this study non-linear elastic behaviors of contact between the wire and the bracket slot were considered on. We put the active torque between the lateral and cenral incisor and between the second premolar and the first molar with/without cinch-back. The results were expressed by quantitative and visible ways. The findings of this study were as follows: 1. Reciprocal actions to active torque were complex system consisting of a combination of counter-torque, bucco-lingual linear displacement and tipping, rotation of the teeth, occluso-gingival linear displacement. 2. When active anterior crown labial torque was applied, crown labial tippings of the lateral were the greatest, and those of the central incisor was the next, Crown lingual tippings of the canine and the first premolar, mesial rotations and extrusion of the lateral and distal rotations and intrusion of the canine occurred. When anterior torque with the cinch-back was applied, amount of crown labial tippings of the lateral and central incisor were reduced. Amount of crown lingual tipping of the canine and the first premolar were increased. Mesial tippings and mesial rotations of the second molar occurred. 3. When active posterior crown lingual torque was applied, crown lingual tippings of the first moalr were the greatest, and crown labial tippings of the second premolar and the first premolar were the next, the crown lingual tipping of the second molar were a little. Mesial rotations of the second premolar occurred but those of the first premolar didn't occurred.

  • PDF

Structural Design and Analysis upon Active Rotor Blade with Trailing-edge Flap (뒷전 플랩을 장착한 지능형 로터 블레이드의 구조 설계 및 해석)

  • Eun, Won-Jong;Natarajan, Balakumaran;Lee, Jae-Hwan;Shin, Sang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.499-505
    • /
    • 2012
  • Vibratory loads imposed by the rotating blade upon the fuselage has been one of major obstacles in rotorcrafts. A new concept of rotor blade is currently developed to adopt an Active Trailing-edge Flap (ATF) to alleviate such obstacles. The flap is mounted at 65~85% spanwise location from the rotor hub. The nominal rotational speed of the blade is as high as 1,528 RPM, to match the required tip Mach number. Structural integrity is one of the important design aspects to be maintained and monitored in this special type of rotor. This is due to that many detailed components, which drive the flap, are inserted inside the rotating blade. To conduct its structural design and analysis, CAMRAD-II and the one-dimensional beam analysis are used. At the same time, three-dimensional finite element analysis are also used, such as MSC. PATRAN/NASTRAN, in order to analyze the details of the present active blade. As a result, comparable characteristics for the present rotor are predicted by both approaches.

Study on TRX Channel Amplitude and Phase Calibration Method for a Radar Wind Profiler Based on 256 Active Phased Array (256 능동위상배열 기반 연직바람 관측장비의 송수신 채널 크기 및 위상 보정 방법 연구)

  • Jung, Woo-Jae;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.162-170
    • /
    • 2022
  • In this paper, the phased-array transceiver (TRX) channel amplitude and phase calibration method for a radar wind profiler (RWP) based on the 256 active phased array is discussed. Without the additional module, the TX and RX calibration paths were secured using couplers and switches in the TRX front ends and the TRX switching duplexers, and the amplitude and phase of the 256 TRX were calibrated using a gain and phase detector. The beam widths and side lobes of five beams (vertical, east, west, south, and north) of the calibrated 256 active phased array antenna were confirmed by a near-field which agreed well with the simulation results. The proposed calibration method can be easily applied to a system based on an active phased array operated in an outdoor environment.