• Title/Summary/Keyword: activated gas

Search Result 490, Processing Time 0.02 seconds

Preparation of Gas Sensor from Pitch-based Activated Carbon Fibers and Its Toxic Gas Sensing Characteristics (피치계 활성탄소섬유기반 가스센서 제조 및 유해가스 감응 특성)

  • Kim, Min Il;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.193-197
    • /
    • 2014
  • The electrode for gas sensor was prepared by using pitch-based activated carbon fibers and polyvinyl alcohol (PVA) to investigate the toxic gas sensing characteristics. The physicochemical properties of activated carbon fibers electrode for gas sensor were analyzed with SEM and BET. Toxic gases sensing property of the electrode was also identified by different toxic gases such as $NH_3$, NO and $CO_2$. The specific surface area of activated carbon fibers electrode for gas sensor was decreased by 33% owing to PVA used as a binder compared with the activated carbon fibers. However, its pore size distribution of the ACF electrode was not greatly influenced by PVA. The activated carbon fibers electrode for gas sensor responded to toxic gases by electron hopping unlike semiconductor based gas sensors. In this study, activated carbon fibers electrode was decreased to 7.5% in resistance for the NH3 gas of the 100 ppm concentration and its $NH_3$ gas sensing property was confirmed the most excellent compared with other toxic gases.

Adsorption Characteristics of Activated Carbons According to Impregnation Concentrations and Inlet CO2 Gas Concentrations (함침농도와 CO2 가스 유입농도에 따른 활성탄의 흡착특성)

  • Lee, Dong-Hwan;Kam, Sang-Kyu;Lee, Song-Woo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1403-1407
    • /
    • 2010
  • The adsorption characteristics of $CO_2$ gas on impregnated activated carbons with MEA (Mono-ethanolamine) and AMP (2-Amino 2-methyl 1-propanol) were studied to improve the adsorption ability of $CO_2$ gas on activated carbon. The equilibrium adsorption capacity of $CO_2$ gas was increased by increment of impregnation concentration up to 40 %, but decreased above 50 %. The adsorption capacity of activated carbon impregnated with AMP was higher than activated carbon impregnated with MEA. The breakthrough was fast according to increment of inlet concentration of $CO_2$ gas.

Flow Characteristics and Residence Time of Activated Carbon in the Cyclone for Optimized Design of an Adsorption/Catalysis Reactor (흡착/촉매 공정개선을 위한 사이클론 내 유동특성 및 활성탄 체류시간 산정)

  • Choi, Choeng-Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.416-424
    • /
    • 2007
  • In adsorption/catalytic process, numerical analysis has been performed to identify the flow characteristics of flue gas in the cyclone and to estimate the residence time of activated carbon using Computational Fluid Dynamics (CFD) technique. To consider flue gas and activated carbon particles simultaneously, Euler-Lagrangian model was employed so that residence time could be obtained from the numerical analysis directly. The numerical analysis has been performed with different three particle sizes and compared each flow characteristics with particle’ size. Fundamental flow patterns of flue gas and activated carbon particles, pressure distribution, residence time of flue gas, and activated carbon particles and distribution of activated carbon have been obtained from the numerical analysis.

Study on the Manufacture of Ethylene Gas Absorbing Corrugated Board (에틸렌 가스 흡착 기능성 골판지 제조를 위한 기초연구)

  • Lee, Ji Young;Kim, Chul Hwan;Kim, Eun Hea;Park, Tae Ung;Choi, Jae Sung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.20-27
    • /
    • 2016
  • Ethylene gas is a natural hormone that directly affects the freshness of agricultural products, so it is very important for the maintenance of freshness to remove ethylene gas from corrugated board boxes. Many methods for the removal of this and other gases have been reported. In this study, the utilization of an absorbent using activated carbon was adopted for the removal of ethylene gas from a corrugated board box. Activated carbon powders were prepared by grinding in a laboratory and were used to treat the surface and to laminate paperboards with a starch solution. The ethylene gas absorption was evaluated by using a gas chromatography to measure the residual ethylene gas concentration. About 60% of the ethylene gas was absorbed by the activated carbon itself. However, the paperboards that were surface-treated and laminated with starch and activated carbon showed lower than 20% ethylene gas absorption. This was because the starch and smaller particles of activated carbon blocked the surface pores of activated carbon particles. Therefore, either the use of the binders must be minimized for the surface treatment of paperboards, or activated carbon packs can be used as absorbents in corrugated boxes.

Numerical Analysis on Flow Characteristics in the Reactor of an Integrated Adsorption/Catalysis Process with Bag Filters (백필터를 활용한 흡착/촉매 통합공정 시스템의 반응기 내 유동특성 및 체류시간에 대한 수치해석적 연구)

  • Choi, Choeng-Ryul;Koo, Yoon-Seo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.203-213
    • /
    • 2007
  • Numerical analysis has been performed to understand flow characteristics in the reactor with bag filters in an integrated adsorption/catalytic process which can treat dioxin and $NO_{x}$ together. Computational fluid dynamics technique was employed with Euler-Lagrangian model to consider flue gas and activated carbon particles simultaneously, so that residence time of flue gas and activated carbon particle could be obtained from the numerical analysis directly. The numerical analysis has been performed with different three particle sizes and compared each flow characteristics with particle's size. Fundamental flow patterns of flue gas and activated carbon particles, pressure distribution, residence time of flue gas and activated carbon particles, and distribution of activated carbon have been obtained from the numerical analysis. Flow patterns of flue gas and activated carbon particles in the reactor were very complicated and they moved along very various paths. Therefore, their residence time in the reactor was also various. The results obtained would be effectively used to estimate the removal efficiency in the reactor once the residence time is combined with the reaction equation.

NO Gas Sensor with Enhanced Sensitivity Using Activated Carbon Prepared from Pyrolysis Fuel Oil and Polyethylene Terephthalate (열분해 연료유 및 PET 기반 활성탄을 이용한 NO 가스 센서의 감도 향상 연구)

  • Kwak, Cheol Hwan;Seo, Sang Wan;Kim, Min Il;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.42-48
    • /
    • 2021
  • In this study, a sensor for detection of nitric oxide (NO) gas was developed using petroleum pitch-based activated carbon which was synthesized from pyrolysis fuel oil (PFO). Polyethylene terephthalate (PET) was added to increase molecular weight by stimulating a polymerization of components in PFO during the pitch synthesis process. The increase in the molecular weight of pitch contributed to the improvement of textural properties of activated carbon, such as the specific surface area and micropore volume. It also enhanced the sensitivity of NO gas sensor based on the activated carbon. In addition, the effect of PET addition during the pitch synthesis on the surface oxygen content and conductivity of activated carbon was investigated. Finally, the correlation of the sensitivity with physical properties of activated carbon was analyzed.

The Humic Acid Treatment Characteristics by Ionized Gas and Combination with Activated Carbon (이온화가스와 활성탄을 이용한 휴믹산 처리에 관한 연구)

  • Chung, Paul-Gene;Lee, Eun-Ju;Kim, Min-Jeong;Cho, Sun-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.72-77
    • /
    • 2004
  • Laboratory studies were carried out to find out the characteristics of humic acid treatment by activated carbon and ionized gas, In order to increase oxidation power of ionized gas for treating organic matter, we used granular activated carbon. By using $UV_{254}$, easy analysis method, we calculated humic acid concentration and $SCOD_{cr}$ concentration. For an initial concentration of humic acid, 10, 50 and 100ppm, the reaction rate constant by $UV_{254}$ was $8.98{\times}10^{-3}$/min, $5.62{\times}10^{-3}$/min and $4.8{\times}10^{-3}$/min respectively due to the same flow rate of ionized gas. When we added activated carbon to the ionized gas for humic acid treatment, the reaction rate constant increased in 4.13, 3.65 and 3.15 times. So, by using activated carbon in treating humic acid by ionized gas, oxidation power of organic matter by ionized gas was increased. The hydrophobic fraction constitutes 98% of organic matter for humic acid at the beginning. After the treatment using ionized gas for humic acid, the hydrophobic fraction decreased by 63~65% and the hydrophilic one increased by 35~37%. So, it was proved that the treatment increased the hydrophilic fraction in organic matter.

Flow Characteristics with Inflow-Duct Types in the Reactor of an Integrated Adsorption/Catalysis Process with Bag Filters (연소 배출가스의 유입방식에 따른 백필터를 활용한 흡착/촉매 통합공정 시스템 반응기 내 유동특성)

  • Choi, Choeng-Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.425-434
    • /
    • 2007
  • An integrated adsorption/catalytic process has been considered to treat dioxin and $NO_x$ simultaneously. The process consists of a cyclone and a reactor with nine bag filters. In this study, numerical analysis has been performed to understand flow characteristics with inflow-duct types in the reactor. To consider flue gas and activated carbon particles simultaneously, Euler-Lagrangian model was employed. Fundamental flow patterns of flue gas and activated carbon particles, pressure distribution and distribution of activated carbon have been obtained from the numerical analysis. Also trace length and residence time of flue gas, residence time of activated carbon particles have been calculated directly. Flow patterns of flue gas and activated carbon particles in the reactor were very complicated and they moved along very various paths. Therefore, their residence time in the reactor was also various. The flow characteristics in the reactor were strongly influenced by inflow-duct types. The results obtained would be effectively used to estimate the removal efficiency in the reactor once the residence time is combined with the reaction equation.

Preparation of Novel Sorbents for Gas-phase Mercury Removal

  • Lee, Si-Hyun;Rhim, Young-Jun;Park, Young-Ok
    • Carbon letters
    • /
    • v.3 no.4
    • /
    • pp.187-191
    • /
    • 2002
  • In the present research, we prepared the activated carbon (AC) sorbents to remove gas-phase mercury. The mercury adsorption of virgin AC, chemically treated AC and fly ash was performed. Sulfur impregnated and sulfuric acid impregnated ACs were used as the chemically treated ACs. A simulated flue gas was made of SOx, NOx and mercury vapor in nitrogen balance. A reduced mercury adsorption capacity was obtained with the simulated gas as compared with that containing only mercury vapor in nitrogen. With the simulated gas, the sulfuric acid treated AC showed the highest performance, but it might have the problem of corrosion due to the emission of sulfuric acid. It was also found that the high sulfur impregnated AC also released a portion of sulfur at $140^{\circ}C$. Thus, it was concluded that the low sulfur impregnated AC was suitable for the treatment of flue gas in terms of stability and efficiency.

  • PDF

Design of Semiconducting Gas Sensors for Room-Temperature Operation

  • Song, Young Geun;Kim, Gwang Su;Ju, Byeong-Kwon;Kang, Chong-Yun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Gas sensors that operate at room temperature have been extensively studied because of sensor stability, lift time, and power consumption. To design effective room-temperature gas sensors, various nanostructures, such as nanoparticles, nanotubes, nanodomes, or nanofibers, are utilized because of their large-surface-to-volume ratio and unique surface properties. In addition, two-dimensional materials, including MoS2, SnS2, WS2, and MoSe, and ultraviolet-activated methods have been studied to develop ideal room-temperature gas sensors. Herein, a brief overview of state-of-the-art research on room-temperature gas sensors and their sensing properties, including nanostructured materials, two-dimensional materials, the ultraviolet-activated method, and ionic-activated gas sensors, is provided.