• Title/Summary/Keyword: activated carbon removal efficiency

Search Result 325, Processing Time 0.026 seconds

The Effect of Column Process on the Treatment of Municipal Solid Waste Leachate (Column 장치를 이용한 도시쓰레기 침출수의 처리효과)

  • Han, Mun-Gyu;Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.3
    • /
    • pp.201-208
    • /
    • 1992
  • Municipal landfill leachate, a major source of soil contamination and ground water pollution, causes serious environmental problems. To investigate the removal efficiency of pollutants in the leachate by sand, briquet ash, fly ash, and activated carbon columns, COD and some pollutants in the leachate passed through each column for 8 weeks were examined. Average COD removal efficiency for 8 weeks was 83%, 45%, and 43% by activated carbon, briquet ash and fly ash columns, respectively. COD was not effectively reduced by sand column. Average ${NH_4}\;^+$ removal efficiency for 8 weeks was more than 60% by ail columns. Hardness was effectively removed for 8 weeks by fly ash and activated carbon columns. Anoins including $PO_4\;^{3-}$, $CI^-$ and $SO_4^{2-}$ were not removed by all columns.

  • PDF

Preliminary Study on Dust Removal by Electrode-Plate Coated with Activated Carbon (활성탄전극의 분진제거에 대한 기초연구)

  • Kim, Kwang Soo;Park, Hyun Chul;Jun, Tae Hwan;Lee, Ju Haeng;Kim, Il Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.749-755
    • /
    • 2013
  • The purposes of this research are to know the optimal gab and electric pressure (voltage) of electrode-plates coated with activated carbon and also to study their arrangement through dust removal efficiency. From the experimental results of attached dust mass at different electrode-plate gab, the frequency of attachment and detachment of dust was more increased as electrode-plate gab was closer. In attached dust mass per unit area of electrode-plate, the farther electrode gab, the more increased. But in total attached dust mass, the closer electrode gab, the more removed. From the experimental results, the optimal electrode arrangement in dust removal chamber was considered that the forward parts of chamber need to be increased the number of electrode-plate, the backward parts to be increased them. The dust attachment have no relation with electric pressure while showing high removal efficiency under condition of 5 kV of voltage and 2 cm of electrode-plates gab.

Effective Treatment System for the Leachate from a Small-Scale Municipal Waste Landfill (소규모 쓰레기 매립장 침출수의 효율적인 처리 방안에 관한 연구)

  • Cho Young-Ha;Kwon Jae Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.1
    • /
    • pp.51-65
    • /
    • 2002
  • This study was carried out to apply some basic physical and chemical treatment options including Fenton's oxidation, and to evaluate the performances and the characteristics of organic and nitrogen removal using lab-scale biological treatment system such as complete-mixing activated sludge and sequencing batch reactor(SBR) processes for the treatment of leachate from a municipal waste landfill in Gyeongnam province. The results were as follows: Chemical coagulation experiments using aluminium sulfate, ferrous sulfate and ferric chloride resulted in leachate CO $D_{Cr}$ removal of 32%, 23% and 21 % with optimum reaction dose ranges of 10,000~15,000 mg/$\ell$, 1,000 mg/$\ell$ and 500~2,000 mg/$\ell$, respectively. Fenton's oxidation required the optimum conditions including pH 3.5, 6 hours of reaction time, and hydrogen peroxide and ferrous sulfate concentrations of 2,000 ~ 3,000 mg/$\ell$ each with 1:1 weight ratio to remove more than 50% of COD in the leachate containing CO $D_{Cr}$ between 2,000 ~ 3,000 mg/$\ell$. Air-stripping achieved to remove more than 97% of N $H_3$-N in the leachate in spite of requiring high cost of chemicals and extensive stripping time, and, however, zeolite treatment removing 94% of N $H_3$-N showed high selectivity to N $H^{+}$ ion and much faster removal rate than air-stripping. The result from lab-scale experiment using a complete-mixing activated sludge process showed that biological treatability tended to increase more or less as HRT increased or F/M ratio decreased, and, however, COD removal efficiency was very poor by showing only 36% at HRT of 29 days. While COD removal was achieved more during Fenton's oxidation as compared to alum treatment for the landfill leachate, the ratio of BOD/COD after Fenton's oxidation considerably increased, and the consecutive activated sludge process significantly reduced organic strength to remove 50% of CO $D_{Cr}$ and 95% of BO $D_{5}$ . The SBR process was generally more capable of removing organics and nitrogen in the leachate than complete-mixing activated sludge process to achieve 74% removal of influent CO $D_{Cr}$ , 98% of BO $D_{5}$ and especially 99% of N $H_3$-N. However, organic removal rates of the SBR processes pre-treated with air-stripping and with zeolite were not much different with those without pre-treatment, and the SBR process treated with powdered activated carbon showed a little higher rate of CO $D_{Cr}$ removal than the process without any treatment. In conclusion, the biological treatment process using SBR proved to be the most applicable for the treatment of organic contents and nitrogen simultaneously and effectively in the landfill leachate.e.

A Comparative Study of Catalytic Ozone processes for Removal of Refractory Organics (난분해성 유기물질 제거를 위한 오존/촉매 공정의 비교에 관한 연구)

  • Lee, Gyu-Hwan;Lee, Yu-Mi;Rhee, Dong-Seok
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.199-205
    • /
    • 2006
  • Ozone alone and catalytic ozone processes were introduced for treatment of humic acid, which is representative refractory organic compound. The treatment efficiencies of humic acid in each process were analyzed in pH variation, DOC removal, and $UV_{254}$ decrease. Mn loaded GAC catalyst was prepared by loading potassium permanganate onto the granular activated carbon surface. BCM-GAC and BCM-Silica gel catalyst were prepared by BCM. $UV_{254}$ decrease in all processes was comparatively high with efficiency over 87%. DOC removal in ozone/GAC process was the highest with 78%, and removal rates for other processes followed the order ozone/BCM-GAC(62%) > ozone/BCM-silica gel(45%) > ozone/silica gel(43%) > ozone/Mn Loaded GAC(42%) > ozone alone(37%).

  • PDF

Chloride ion removal effect for the ACF electrochemically treated with silver

  • Oh, Won-Chun;Park, Choung-Sung;Bae, Jang-Soon
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.316-322
    • /
    • 2006
  • The removal efficiencies of silver-ACFs were associated with their surface properties such as surface area, porosity, and the electro-chemical reaction time for the silver treatments. X-ray diffraction patterns of fibers electrochemically treated with silver display diffraction peaks for metallic silver and kinds of silver chloride complexes on the fiber surface after electrochemical adsorption. The results of SEM and EDX indicate that surface reaction motive of silver-ACF prepared by electrochemical reaction are depend on time function for the chloride ion removal efficiency. Finally, Cl ion adsorbed by the silver-ACFs from the ICP analysis seems to show an excellent removal effect.

Biological Treatment of Dyeing Wastewater Using Jet Loop Reactor with Activated Carton Supports (활성탄 담체가 포함된 Jet-Loop Reactor를 이용한 종합염색폐수처리)

  • 조무환;박종탁;이길호;류원률
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.241-246
    • /
    • 2002
  • Today, many problems of dye-processing wastewaters were raised due to industry of dyeing and textiles. It is difficult to treat them perfectly because they contain many poorly degradable matters, such as surfactants, ethylene glycol, polyvinyl alcohol, and so on. To improve the performances of conventional physicochemical treatment and activated sludge process, new systems of combining jet-loop reactor (JLR) with physicochemical treatment were developed. Volumetric oxygen transfer coefficient ($k_{L}a$) of JLR was significantly larger than that of air-lift reactor. Also, for the effective treatment of dye-processing wastewater, JLR with active carbon supports (JLRAS) were investigated. Removal efficiency of BOD, $COD_{Mn}$, $COD_{Cr} and color were found as 99, 86, 84, 83%, respectively, when HRT was 8 hrs. And performance of JLRAS was rapidly restored after step change of $COD_{Mn}$ loading late. The optimal coagulant and dosage of second physicochemical treatment after JLRAS were polyferric sulfate and 130 mg/L, respectively, when removal efficiencies of $COD_{Mn} and color were 85 and 73%, respectively. In conclusion, this system enables the reduction of operation cost, and the effective removal of many organics.

Evaluation of Treatability on DOC and THMs According to Periodic Cumulative Filling of Granular Activated Carbon (GAC) (입상활성탄 주기적 누적충진에 따른 용존유기탄소와 THMs 처리능 평가)

  • Son, Hee-Jong;Kim, Sang-Goo;Seo, Chang-Dong;Yoom, Hoon-Sik;Ryu, Dong-Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.513-518
    • /
    • 2017
  • In this paper, the removal efficiency of THMs (Trihalomethanes) and DOC (Disolved organic carbon) was compared under different GAC (Granual activated carbon) filling methods. One method is "full filling method" in which column is fully filled with GAC at once and the other is "periodic cumulative method" in which column is partially filled with GAC (10, 20, 33 and 50% of total column volume) and added each ratio during 300 days. The effluent concentration of both THMs and DOC under full filling method was low during the initial period, however, steadily increased with operating time. In the contrast, with periodic cumulative method, it maintained (relatively) evenly during the operating period. Periodic cumulative method was more efficient for removing THMs than full filling method. However, when the ratio of chlorodibromomethane or bromoform among THMs was significantly higher than chloroform and bromodichloromethane, full filling method was more efficient than periodic cumulative method. Full filling method had benefit to total DOC removal and control of average DOC concentration in effluent. Overall, periodic cumulative method is more efficient to equalize the removal efficiency of THMs and DOC, so the more frequent refilling of column with small amount of GAC is more advantageous.

Nitrogen removal characteristics of pigment wastewater using PAC-A/O process (PAC-A/O 공정을 이용한 안료폐수의 질소 제거 특성)

  • Jeong, Jongsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.19-25
    • /
    • 2018
  • The objectives of this study were to evaluate the removal characteristics of total nitrogen, the influence factor of denitrification and the optimum operating condition in the pigment wastewater treatment using PAC-A/O process. The operating conditions of PAC-A/O process were mean BOD volumetric loading $0.86kgBOD/m^3/day$, mean F/M ratio 0.072~0.13 kgBOD/kgMLVSS/day and mean C/N ratio 3.47, respectively. The conditions of anoxic process in the field plant test were mean pH 8.3~8.7 and mean temperature $34.1{\sim}44.0^{\circ}C$. The ORP bending point knee was eventually appeared in the ORP -107 mV and $NO_3{^-}-N$ removal efficiency was increased according to the ORP decrease. In the ORP -107 mV below condition, the removal efficiency of T-N and $NO_3{^-}-N$ was 92.3~95.0% and 98.5~99.7%. Denitrification rate was calculated to be 1.581~1.791 mg $NO_3{^-}-N/gMLSS/hr$. The experimental results showed that the ORP control in the PAC-A/O process could be an effective method for treatment of pigment wastewater.

Effect of Microwave and High-temperature Heating Methods on Contaminates Removal from Oil-contaminated Soil by Heat Treatment (유류오염토양의 열처리에서 micro파와 고온발열체 방법이 오염제거에 미치는 영향)

  • Ha, Sang-An;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.46-52
    • /
    • 2014
  • This study was conducted to observe the removal efficiency of oil-contaminated soil by various tests using microwaves and high-temperature heating elements. The water content was measured with the treatment amount, which was lowered to 300g in a relatively short amount of time. The treatment rate of TPH(Total Petroleum Hydrocarbons) showed the highest value with 70.1% when the SiC-activated carbon heating element was at 4 kW/kg, compared to the SiC heating element used alone. In particular, the higher electric power became, the higher treatment rate became, except at 3 kW. In the case of the heating element made by the fusion of SiC and activated carbon, the internal temperature exceeded $300^{\circ}C$ and again fell when it was treated at 4 kW for about 2 minutes. Then, after about 8 minutes, it rose again. On the basis of such results, the energy content necessary for the sample was calculated according to the electric power of microwaves, and tthe constant of TPH treatment was measured by tests on the treatment characteristics of oil-contaminated soil.

Evaluation of Performance and Economical Efficiency of the Advanced Wastewater Treatment System (고도(高度) 하수처리(下水處理) 시스템의 처리성능 및 경제성 평가에 관한 연구)

  • Kim, Dong Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.61-71
    • /
    • 1999
  • For a high-rate fermentation and recovery of organic acid, we have developed a new organic acid fermentation reactor with membrane filter, which is the most important part in the new advanced wastewater treatment system. The recovered organic acid is to be reused as an organic carbon source at denitrification process. Some experiments were conducted to compare the performance of acid fermentation at different SRTs, such as 5, 10, and 20 days. The total organic acid concentration produced during the runs was in the range of 2,100-2,900 (mgC/L). The conversion efficiency from substrate to organic acid reached to from 43% to 59%. The recovery rate of organic acid from substrate based on TOC was from 26% to 53%. Regardless of operational conditions, it has been able to maintain the membrane flux constantly, in the range of 0.4-0.46 ($m^3/m^2/day$). The transmembrane pressure drop was 0.2-0.3 (kg/cm) for 100 day's operation. The result of simulation is as follows. Organic removal efficiency of the new advanced treatment system is 95%. 73% of Nitrogen is removed. The removal efficiency of Phosphorus is 93%. By coqulation, soluble phosphorus is able to remove from the water treatment lines, which is impossible at conventional activated sludge system. The unit construction cost is 65000 (yen/m3) and it was 1.4 times than that of the standard activated sludge system. The unit operation cast is 7.7 ($yen/m^3/day$) and it was 1.3 times than that of the standard activated sludge system.

  • PDF