• 제목/요약/키워드: activated carbon nanofibers

검색결과 25건 처리시간 0.02초

Improvement of gas sensing properties of carbon nanofibers based on polyacrylonitrile and pitch by steam activation

  • Kim, Jeongsik;Kim, Hyung-Il;Yun, Jumi
    • Carbon letters
    • /
    • 제24권
    • /
    • pp.36-40
    • /
    • 2017
  • Polyacrylonitrile/pitch nanofibers were prepared by electrospinning as a precursor for a gas sensor material. Pitch nanofibers were properly fabricated by incorporating polyacrylonitrile as an electrospinning supplement component. Polyacrylonitrile/pitch nanofibers were activated with steam at various temperatures followed by subsequent carbonization to make carbon nanofibers with a highly conductive graphitic structure. Steam activation was effective in facilitating gas adsorption onto the carbon nanofibers due to the increased surface area. The carbon nanofibers activated at $800^{\circ}C$ had a larger surface area and a lower micro pore fraction resulting in a higher variation in electrical resistance for improved CO gas sensing properties.

함산소불소화 효과에 의한 전기방사 활성탄소나노섬유의 $CO_2$ 저장 (Effect of oxyfluorination on activated electrospun carbon nanofibers for $CO_2$ storage)

  • 배병철;김종구;임지선;이영석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.219.2-219.2
    • /
    • 2011
  • The oxyfluorination effects of electrospun carbon nanofibers (OFACFs) were investigated for $CO_2$ storage. Carbon nanofibers were prepared form poly acrylonitrile / N,N-dimethylformamide solution through electrospinning method and heat treatment. Chemical activation of carbon nanofibers were carried out in order to improve the pore structure. And the surface modification of activated carbon nanofibers was conducted by oxyfluorination to improve the $CO_2$ storage on effect of introduced functional groups. The samples were labeled CF (electrospun carbon nanofiber), ACF (activated carbon nanofibers), OFACF-1 ($F_2:O_2$ = 3:7), OFACF-2 ($F_2:O_2$ = 5:5) and OFACF-3 ($F_2:O_2$ = 7:3). The functional group of OFACFs was investigated by x-ray photoelectron spectroscopy analysis. The specific surface area, pore volume and pore size of OFACFs were calculated and pore shape was estimated by the BET equation. Through the adsorption isotherm, the specific surface area and pore volume significantly decreased by oxyfluorination.

  • PDF

Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation

  • Lee, Hye-Min;Kim, Hong-Gun;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • 제15권1호
    • /
    • pp.71-76
    • /
    • 2014
  • Activated carbon nanofibers (ACNF) were prepared from polyacrylonitrile (PAN)-based nanofibers using $CO_2$ activation methods with varying activation process times. The surface and structural characteristics of the ACNF were observed by scanning electron microscopy and X-ray diffraction, respectively. $N_2$ adsorption isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller and Dubinin-Radushkevich equations. As experimental results, many holes or cavernous structures were found on the fiber surfaces after the $CO_2$ activation as confirmed by scanning electron microscopy analysis. Specific surface areas and pore volumes of the prepared ACNFs were enhanced within a range of 10 to 30 min of activation times. Performance of the porous PAN-based nanofibers as an electrode for electrical double layer capacitors was evaluated in terms of the activation conditions.

Effects of carbonization temperature on pore development in polyacrylonitrile-based activated carbon nanofibers

  • Lee, Hye-Min;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • 제15권2호
    • /
    • pp.146-150
    • /
    • 2014
  • In this work, activated carbon nanofiber (ACNF) electrodes with high double-layer capacitance and good rate capability were prepared from polyacrylonitrile nanofibers by optimizing the carbonization temperature prior to $H_2O$ activation. The morphology of the ACNFs was observed by scanning electron microscopy. The elemental composition was determined by analysis of X-ray photoelectron spectroscopy. $N_2$-adsorption-isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller and Dubinin-Radushkevich equations. ACNFs processed at different carbonization temperatures were applied as electrodes for electrical double-layer capacitors. The experimental results showed that the surface morphology of the CNFs was not significantly changed after the carbonization process, although their diameters gradually decreased with increasing carbonization temperature. It was found that the carbon content in the CNFs could easily be tailored by controlling the carbonization temperature. The specific capacitance of the prepared ACNFs was enhanced by increasing the carbonization temperature.

Comparative studies of porous carbon nanofibers by various activation methods

  • Lee, Hye-Min;Kang, Hyo-Rang;An, Kay-Hyeok;Kim, Hong-Gun;Kim, Byung-Joo
    • Carbon letters
    • /
    • 제14권3호
    • /
    • pp.180-185
    • /
    • 2013
  • In this study, activated carbons nanofibers (ACNFs) were prepared from polyacrylonitrile-based nanofibers by physical ($H_2O$ and $CO_2$) and chemical (KOH) activation. The surface and structural characteristics of the porous carbon were observed by scanning electron microscopy and X-ray diffraction, respectively. Pore characteristics were investigated by $N_2$/77K adsorption isotherms. The specific surface area of the physically ACNFs was increased up to $2400m^2/g$ and the ACNFs were found to be mainly composed of micropore structures. Chemical activation using KOH produced ACNFs with high specific surface area (up to $2500m^2/g$), and the micropores were mainly found in the ACNFs. The physically and chemically ACNFs showed both mainly type I from the International Union of Pure and Applied Chemistry classification.

폴리아크릴로니트릴계 활성나노탄소섬유의 기공특성이 이산화탄소 흡착에 미치는 영향 (Influence of the Pore Properties on Carbon Dioxide Adsorption of PAN-based Activated Carbon Nanofibers)

  • 이다영;조세호;김예솔;이영석
    • 폴리머
    • /
    • 제37권5호
    • /
    • pp.592-599
    • /
    • 2013
  • Polyacrylonitrile(PAN) 고분자 용액으로부터 전기방사된 고분자 나노섬유를 다양한 농도의 KOH 용액을 이용하여 다공성 나노탄소섬유를 제조하였으며, 그에 따른 세공 구조 및 이산화탄소 흡착 특성을 평가하였다. PAN 용액으로부터 제조된 활성나노탄소섬유는 KOH 활성화 농도가 증가함에 따라 섬유 직경이 감소하였으며, 표면의 산소관능기가 증가하는 경향을 보였다. 또한 질소 흡착에 따른 세공특성을 분석한 결과 KOH 활성화 농도 증가에 따라 활성나노탄소섬유의 비표면적이 증가하고, 미세공은 4 M KOH로 활성화한 나노탄소섬유가 가장 많았으며, 중간세공은 8 M KOH로 활성화한 활성나노탄소섬유가 가장 많았다. 또한 0, $25^{\circ}C$에서 KOH 활성화제의 농도가 BET 및 XPS에서 나타난 것처럼 이산화탄소 흡착을 강화시키도록 세공 및 표면 특성에 영향을 주었다.

활성탄소에 담지된 백금나노입자의 전기화학적 거동에 대한 그라파이트 나노섬유 첨가효과 (Effect of Graphite Nanofibers Addition on the Electrochemical Behaviors of Platinum Nanoparticles Deposited on Activated Carbons)

  • 조원빈;오미순;김주현;김석
    • Korean Chemical Engineering Research
    • /
    • 제48권6호
    • /
    • pp.673-678
    • /
    • 2010
  • 본 연구에서는 탄소지지체로 활성탄소를 주요재료로 사용하고 여기에 그라파이트 나노섬유(graphite nanofibers)를 함량별로 혼합시킨 후, 백금전구체를 포함하는 용액에 분산시키고, 화학적인 환원반응을 통해서 백금입자를 담지하여 제조하였다. 첨가하는 GNF의 함량을 조절하면서, 백금입자의 결정 크기와 담지함량을 제어할 수 있었다. GNF 함량이 15 wt%인 혼합지지체를 사용한 백금입자의 경우, 최대의 전기활성 특성을 나타내었다. 또한, GNF 함량을 0%에서 15%로 증가시킴에 따라 전기전도도가 $10^{-4}S/cm$에서 $10^{-1}S/cm$로 증가하였다. 첨가제 GNF를 10%까지 도입한 경우, 백금입자의 전기활성은 크게 증가하는 경향을 보이지만, 15%에서는 그 증가경향이 작아져서 포화되는 현상이 보였다. 이런 결과는 전기활성도의 변화가 혼합지지체의 전기전도도 변화와 백금이 담지된 함량, 그리고, 담지형태와 관련성이 있음을 알 수 있었다.

Hierarchical porous carbon nanofibers via electrospinning

  • Raza, Aikifa;Wang, Jiaqi;Yang, Shan;Si, Yang;Ding, Bin
    • Carbon letters
    • /
    • 제15권1호
    • /
    • pp.1-14
    • /
    • 2014
  • Carbon nanofibers (CNFs) with diameters in the submicron and nanometer range exhibit high specific surface area, hierarchically porous structure, flexibility, and super strength which allow them to be used in the electrode materials of energy storage devices, and as hybrid-type filler in carbon fiber reinforced plastics and bone tissue scaffold. Unlike catalytic synthesis and other methods, electrospinning of various polymeric precursors followed by stabilization and carbonization has become a straightforward and convenient way to fabricate continuous CNFs. This paper is a comprehensive and brief review on the latest advances made in the development of electrospun CNFs with major focus on the promising applications accomplished by appropriately regulating the microstructural, mechanical, and electrical properties of as-spun CNFs. Additionally, the article describes the various strategies to make a variety of carbon CNFs for energy conversion and storage, catalysis, sensor, adsorption/separation, and biomedical applications. It is envisioned that electrospun CNFs will be the key materials of green science and technology through close collaborations with carbon fibers and carbon nanotubes.

Influence of oxyfluorination on activated carbon nanofibers for CO2 storage

  • Bai, Byong-Chol;Kim, Jong-Gu;Im, Ji-Sun;Jung, Sang-Chul;Lee, Young-Seak
    • Carbon letters
    • /
    • 제12권4호
    • /
    • pp.236-242
    • /
    • 2011
  • The oxyfluorination effects of activated carbon nanofibers (OFACFs) were investigated for $CO_2$ storage. Electrospun CFs were prepared from a polyacrylonitrile/N,N-dimethylformamide solution via electrospinning and heat treatment. The electrospun CFs were chemically activated in order to generate the pore structure, and then oxyfluorination was used to modify the surface. The samples were labeled CF (electrospun CF), ACF (activated CF), OFACF-1 ($O_2:F_2$ = 7:3), OFACF-2 ($O_2:F_2$ = 5:5) and OFACF-3 ($O_2:F_2$ = 3:7). The functional group of OFACFs was investigated using X-ray photoelectron spectroscopy analysis. The C-F bonds formed on surface of ACFs. The intensities of the C-O peaks increased after oxyfluorination and increased the oxygen content in the reaction gas. The specific surface area, pore volume and pore size of OFACFs were calculated by the Brunauer-Emmett-Teller and density functional theory equation. Through the $N_2$ adsorption isotherm, the specific surface area and pore volume slightly decreased as a result of oxyfluorination treatment. Nevertheless, the $CO_2$ adsorption efficiency of oxyfluorinated ACF improved around 16 wt% due to the semi-ionic interaction effect of surface modificated oxygen functional groups and $CO_2$ molecules.

Non-Functionalized Water Soluble Carbon Nanotubes

  • ;최정일;임연민;김유나;김창준;강상수;남태현;강동우
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.43.2-43.2
    • /
    • 2010
  • Most of previous methods for the dispersions of carbon nanotube were achieved by various chemical functionalizations. In this study, however, we generated highly water dispersed carbon nanofibers by altering intrinsic materials property only, such as crystallinity of outer layers of carbons, without chemical treatment. Although most of chemical functionalization requires acidic treatment and may degrade their chemical functions by interacting with other molecules, suggested strategy demonstrated a simple but chemically non-degradable carbon nanotube for the application of various medical applications, such as drug delivery system and implant coatings.Furthermore, protein adsorption was increased by the reducing surface crystalinity since outer activated surface induced more adsorption of oxygen and eventually greater protein adsorption than pristine carbon nanofibers.

  • PDF