• Title/Summary/Keyword: activated carbon electrode

Search Result 183, Processing Time 0.021 seconds

Electrochemical Characteristics of Carbon/Carbon Hybrid Capacitor and Li-ion Battery/Hybrid Capacitor Combination (Carbon계 Hybrid Capacitor의 전기 화학적 기술 및 Li-ion Battery의 혼성 동력원 특성)

  • Lee, Sun-Young;Kim, Ick-Jun;Moon, Seong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.597-598
    • /
    • 2005
  • Recently, the performance of portable electric equipment can often improved by a Li-ion battery assisted by a supercapacitor. A supercapacitor can provide high power density as well as a low resistance in the hybrid system. In this study, we have prepared, as the pluse power souce, a commercially supplied Li-ion battery with a capacity of 700mAh and AC resistivity of $60m\Omega$ at 1kHz and nonaqeous asymmetric hybrid capacitor composed of an activated carbon cathode and MCMB anode, and have examined the electrochemical characteristics of hybrid capacitor and the pulse performances of parallel connected battery/hybrid capacitor source. The nonaqueous asymmetric hybrid capacitor, the stacks of 10 pairs of the cathode, the porous separator and the anode electrode were housed in Al-laminated film cell. The hybrid capacitor, which was charged and discharged at a constant current at $0.25mA/cm^2$ between 3 and 4.3V, has exhibited the capacitance of 100F. And the equivalent series resistance was $32m\Omega$ at 1kHz. By combining a Li-ion battery and a hybrid capacitor, the pulse performance of battery can be improved 23% in run time under a pulse discharge of 7C-rate.

  • PDF

Influence of Activation Temperature on Electrochemical Performances of Styrene-Acrylonitrile Based Porous Carbons (Styrene-Acrylonitrile 기반 다공성 탄소의 전기화학적 특성에 활성화 온도가 미치는 영향)

  • Lee, Ji-Han;Heo, Gun-Young;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.739-744
    • /
    • 2012
  • In this work, we prepared the carbons from synthesized styrene-acrylonitrile carbon precursor. The prepared carbons were chemically activated, and then the activated SAN-based carbons were named as A-SANs. The activations were carried out at different temperatures to investigate the effect of activation temperature on the surface and electrochemical properties of the activated SAN-based carbons for using as an electrode of electric double layer capacitors (EDLC). The characteristics of A-SAN were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), surface area and pore size analysis. Also, the electrochemical behaviors were observed by cyclic voltammetry and galvanostatic charge-discharge method. From the results, the A-SAN 700 showed excellent electrochemical property and the highest specific capacitance, but these properties decreased when the activation temperature was above $700^{\circ}C$. This is due to the fact that the activation at a temperature over $700^{\circ}C$ causes deformation of micropore structures.

Adsorptive Desulfurization of Diesel for Fuel Cell Applications: A Screening Test

  • Ho, Hoang Phuoc;Kim, Woo Hyeong;Lee, So-Yun;Son, Hong-Rok;Kim, Nak Hyeon;Kim, Jae-Kon;Park, Jo-Yong;Woo, Hee Chul
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.88-94
    • /
    • 2014
  • During the past decades much attention has been paid to the desulfurization of diesel oil which is important as a source for the fuel cells to prevent the sulfur poisoning of both diesel steam reforming catalyst and electrode of fuel cell. Although alternative desulfurization techniques have been investigated, desulfurization for ultra-low sulfur diesel (ULSD) is still challenged. Therefore, this research focuses on the desulfurization of commercial ULSD for the application to molten carbonate fuel cell (MCFC). Herein, the performances of several kinds of commercial adsorbents based on activated carbons, zeolites, and metal oxides for desulfurization of ULSD were screened. The results showed that metal oxides based materials can feasibly reduce sulfur concentration in ULSD to a level of 0.1 ppmw while activated carbons and zeolites did not reach this level at current conditions.

Removal of 2,4-D by an Fe(II)/persulfate/Electrochemical Oxidation Process (Fe(II)/과황산/전기화학적 산화 공정에 의한 2,4-D의 제거)

  • Hyun, Young Hwan;Choi, Jiyeon;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.45-53
    • /
    • 2021
  • The removal of 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous solution by coupled electro-oxidation and Fe(II) activated persulfate oxidation process was investigated. The electrochemical oxidation was performed using carbon sheet electrode and persulfate using Fe(II) ion as an activator. The oxidation efficiency was investigated by varying current density (2 - 10 mA/㎠), electrolyte (Na2SO4) concentration (10 - 100 mM), persulfate concentration (5 - 20 mM), and Fe(II) concentration (10 - 20 mM). The 2,4-D removal efficiency was in the order of Fe(II) activated persulfate-assisted electrochemical oxidation (Fe(II)/PS/ECO, 91%) > persulfate-electrochemical oxidation (PS/ECO, 51%) > electro-oxidation (EO, 36%). The persulfate can be activated by electron transfer in PS/ECO system, however, the addition of Fe(II) as an activator enhanced 2,4-D degradation in the Fe(II)/PS/ECO system. The 2,4-D removal efficiency was not affected by the initial pHs (3 - 9). The presence of anions (Cl- and HCO3-) inhibited the 2,4-D removal in Fe(II)/PS/ECO system due to scavenging of sulfate radical. Scavenger experiment using tert-butyl alcohol (TBA) and methanol (MeOH) confirmed that although both sulfate (SO4•-) and hydroxyl (•OH) radicals existed in Fe(II)/PS/ECO system, hydroxyl radical (SO4•-) was the predominant radical.

Specific Surface Area Characteristic Analysis of Porous Carbon Prepared from Lignin-Polyacrylonitrile Copolymer by Activation Conditions (리그닌-PAN 공중합체로 제조한 다공성 탄소 소재의 활성화 처리 조건에 따른 비표면적 특성 연구)

  • LEE, Hyunsu;KIM, Seokju;PARK, Mi-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.299-314
    • /
    • 2021
  • In this study, we investigated the effect of temperature on specific surface area and electrochemical properties when lignin-based porous carbon (LBPC) with potassium hydroxide (KOH) is activated. After preparing LBPCs using lignin-polyacrylonitrile (PAN) copolymer, which was synthesized by graft polymerizing lignin and acrylonitrile as a precursor, activated LBPCs (KA-LBPC-6, 7, 8, 9) were manufactured by activating LBPC with KOH at 600℃, 700℃, 800℃ and 900℃. To identify the surface characteristics of KA-LBPC, observations were made with a scanning electron microscopy (SEM), and the pore characteristics were identified via specific surface area analysis. The electrochemical properties were analyzed using a three-electrode system. The experiment has shown that micropores formed by activation can be observed in SEM images. KA-LBPC-7 had the best pore characteristics among KA-LBPCs, with a specific surface area of 2480.1 m2/g, a micropore volume of 0.64 cm3/g, and a mesopore volume of 0.76 cm3/g. KA-LBPC-7 showed the best electrochemical properties with a specific capacitance of 151.3 F/g at the scan rate of 2 mV/s.

Electrochemical double layer capacitors with PEO and Sri Lankan natural graphite

  • Jayamaha, Bandara;Dissanayake, Malavi A.K.L.;Vignarooban, Kandasamy;Vidanapathirana, Kamal P.;Perera, Kumudu S.
    • Advances in Energy Research
    • /
    • v.5 no.3
    • /
    • pp.219-226
    • /
    • 2017
  • Electrochemical double layer capacitors (EDLCs) have received a tremendous interest due to their suitability for diverse applications. They have been fabricated using different carbon based electrodes including activated carbons, single walled/multi walled carbon nano tubes. But, graphite which is one of the natural resources in Sri Lanka has not been given a considerable attention towards using for EDLCs though it is a famous carbon material. On the other hand, EDLCs are well reported with various liquid electrolytes which are associated with numerous drawbacks. Gel polymer electrolytes (GPE) are well known alternative for liquid electrolytes. In this paper, it is reported about an EDLC fabricated with a nano composite polyethylene oxide based GPE and two Sri Lankan graphite based electrodes. The composition of the GPE was [{(10PEO: $NaClO_4$) molar ratio}: 75wt.% PC] : 5 wt.% $TiO_2$. GPE was prepared using the solvent casting method. Two graphite electrodes were prepared by mixing 85% graphite and 15% polyvinylidenefluoride (PVdF) in acetone and casting n fluorine doped tin oxide glass plates. GPE film was sandwiched in between the two graphite electrodes. A non faradaic charge discharge mechanism was observed from the Cyclic Voltammetry study. GPE was stable in the potential windows from (-0.8 V-0.8 V) to (-1.5 V-1.5 V). By increasing the width of the potential window, single electrode specific capacity increased. Impedance plots confirmed the capacitive behavior at low frequency region. Galvanostatic charge discharge test yielded an average discharge capacity of $0.60Fg^{-1}$.

Optimal Porous Structure of MnO2/C Composites for Supercapacitors

  • Iwamura, Shinichiroh;Umezu, Ryotaro;Onishi, Kenta;Mukai, Shin R.
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.115-121
    • /
    • 2021
  • MnO2 can be potentially utilized as an electrode material for redox capacitors. The deposition of MnO2 with poor electrical conductivity onto porous carbons supplies them with additional conductive paths; as a result, the capacitance of the electrical double layer formed on the porous carbon surface can be utilized together with the redox capacitance of MnO2. However, the obtained composites are not generally suitable for industrial production because they require the use of expensive porous carbons and/or inefficient fabrication methods. Thus, to develop an effective preparation procedure of the composite, a suitable structure of porous carbons must be determined. In this study, MnO2/C composites have been prepared from activated carbon gels with various pore sizes, and their electrical properties are investigated via cyclic voltammetry. In particular, mesoporous carbons with a pore size of around 20 nm form a composite with a relatively low capacitance (98 F/g-composite) and poor rate performance despite the moderate redox capacitance obtained for MnO2 (313 F/g-MnO2). On the other hand, using macro-porous carbons with a pore size of around 60 nm increases the MnO2 redox capacitance (399 F/g-MnO2) as well as the capacitance and rate performance of the entire material (203 F/g-composite). The obtained results can be used in the industrial manufacturing of MnO2/C composites for supercapacitor electrodes from the commercially available porous carbons.

Influence of Oxygen-/Nitrogen-containing Functional Groups on the Performance of Electrical Double-Layer Capacitor (전기이중층 커패시터의 성능에 미치는 산소/질소 함유 관능기들의 영향)

  • Kim, Jieun;Kwon, Young-Kab;Lee, Joong Kee;Choi, Ho-Suk
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1043-1048
    • /
    • 2012
  • In this study, activated carbons (ACs) were modified as electrode materials for an electric double layer capacitor (EDLC) by controlling oxygen- and nitrogen-containing functional groups. The morphological and chemical properties of ACs were analyzed through scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectrometer, automatic elemental analyzer (EA) and Boehm titration. Also, charge/discharge tests were performed to investigate the EDLC performance. Oxygen- and nitrogen-containing functional groups were introduced on the surface of ACs through acid and urea treatments, respectively. ACs with nitrogen-containing functional groups showed 2 mA increase of gravimetric discharge capacity and quick achievement of maximum charge/discharge performance. However, ACs with oxygen-containing functional groups showed low discharge capacity and its gradual decrease during further cyclic test, since the functional groups interrupted adsorption/desorption of charges in the electrolyte on the surface of ACs.

The Design and Electrical Characteristics of 50kW Energy Storage System Using Hybrid Supercapacitor (하이브리드 슈퍼커패시터를 이용한 50kW급 에너지 저장 장치 설계 및 전기적 특성)

  • Mang, Ju-Cheul;Cho, Moon-Taek;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.854-859
    • /
    • 2018
  • This paper describes the characteristics of a hybrid supercapacitor module for power quality stabilization. Hybrid supercapacitor is an promising energy storage device that positioned between conventional EDLC and Li-ion battery. A cylindrical 7500F hybrid supercapacitor ($60{\times}138mm$) was assembled by using the $Li_4Ti_5O_{12}$ electrode as an anode and activated carbon as a cathode. Considering the ESR and efficiency has been designed to module with 41.6F 480V design results in 180 series combination. In order to determine the characteristics of the hybrid supercapacitor module for power system, hybrid supercapacitor cells were connected in series with active balancing circuit. As a result of measuring the 50kw UPS, it was discharged at the current of 104A~143A during the discharge in the voltage range of 350V~480V, and the compensation time at discharge was measured to be about 30s. These results can be used to stabilization of power quality by applying hybrid supercapacitor module.

The Characteristics of Asymmetric Hybrid Supercapacitor Cells and Modules for Power Quality Stabilization (전력품질 안정화용 비대칭 하이브리드 슈퍼커패시터 셀 및 모듈 특성)

  • Lee, Byung-Gwan;Maeng, Ju-Cheul;Lee, Joung-Kyu;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.617-621
    • /
    • 2016
  • In addition to the energy storage facilities based on high power technologies, Electric double layer capacitors(EDLC) are today's candidate for power quality stabilization. However, its low energy density is often inhibiting factor for application of electric power industry. Hybrid supercapacitor is an promising energy storage device that positioned between conventional EDLC and Li-ion battery. This paper describes the preparation and characteristics of a hybrid supercapacitor and module for power quality stabilization. A cylindrical 3200F hybrid supercapacitor ($60{\times}74.5mm$) was assembled by using the $Li_4Ti_5O_{12}$ electrode as an anode and activated carbon as a cathode. It shows 2.5 times higher energy density than conventional EDLC with the same volume. In order to determine the characteristics of the hybrid supercapacitor Module for uninterruptible power supply (UPS), hybrid supercapacitor cells were connected in series with active balancing circuit. At even the high current density of 14A(10C), Module prepared by 18 cells showed the capacitance of 170F at 30~50V, suggesting the applicability for UPS.